
HPSS
Programmer’s Reference
Guide, Volume 2

High Performance Storage System
Release 4.1.1

April 1999 (Revision 0)

April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS Programmer’s Reference, Volume 2

Copyright (C) 1992-1999 International Business Machines Corporation, The Regents of the University of
California, Sandia Corporation, Lockheed Martin Energy Research Corporation, and NASA Langeley
Research Center.

All rights reserved.

Portions of this work were produced by the University of California, Lawrence Livermore National
Laboratory (LLNL) under Contract No. W-7405-ENG-48 with the U.S. Department of Energy (DOE), by the
University of California, Lawrence Berkeley National Laboratory (LBNL) under Contract No.
DEAC03776SF00098 with DOE, by the University of California, Los Alamos National Laboratory (LANL)
under Contract No. W-7405-ENG-36 with DOE, by Sandia Corporation, Sandia National Laboratories
(SNL) under Contract No. DEAC0494AL85000 with DOE, and Lockheed Martin Energy Research
Corporation, Oak Ridge National Laboratory (ORNL) under Contract No. DE-AC05-96OR22464 with DOE.
The U.S. Government has certain reserved rights under its prime contracts with the Laboratories.

DISCLAIMER

Portions of this software were sponsored by an agency of the United States Government. Neither the
United States, DOE, The Regents of the University of California, Sandia Corporation, Lockheed Martin
Energy Research Corporation, nor any of their employees, makes any warranty, express or implied, or
assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights.

Printed in the United States of America

HPSS Release 4.1.1
April 1999 (Revision 0)

High Performance Storage System is a registered trademark of International Business Machines Corporation.
IBM is a registered trademark of International Business Machines Corporation.
AIX and RISC/6000 are trademarks of International Business Machines Corporation.
Encina is a registered trademark of Transarc Corporation.
UNIX is a registered trademark of UNIX System Laboratories, Inc.
Sammi is a trademark of Scientific Software Intercomp.
NFS and Network File System are trademarks of Sun Microsystems, Inc.
DST is a trademark of Ampex Systems Corporation.
ACLS is a trademark of Storage Technology Corporation.
Other brands and product names appearing herein may be trademarks or registered trademarks of third parties.

HPSS Programmer’s Ref., Vol. 2 April 1999 i
Rev. 0

Table of ContentsPreface.. xii

1. Overview.. 1-1

1.1. Name Server.. 1-1
1.1.1. Purpose .. 1-1
1.1.2. Components ... 1-1
1.1.3. Constraints ... 1-1
1.1.4. Libraries.. 1-1

1.2. Bitfile Server... 1-2
1.2.1. Purpose .. 1-2
1.2.2. Bitfile Server Components.. 1-2
1.2.3. Constraints ... 1-2
1.2.4. Libraries.. 1-3

1.3. Storage Server... 1-3
1.3.1. Purpose .. 1-3
1.3.2. Components ... 1-3
1.3.3. Constraints ... 1-4
1.3.4. Libraries.. 1-4

1.4. Mover ... 1-4
1.4.1. Purpose .. 1-4
1.4.2. Components ... 1-5
1.4.3. Constraints ... 1-5
1.4.4. Libraries.. 1-6

1.5. Physical Volume Library... 1-6
1.5.1. Purpose .. 1-6
1.5.2. Components ... 1-6
1.5.3. Constraints ... 1-7
1.5.4. Libraries.. 1-7

1.6. Physical Volume Repository .. 1-7
1.6.1. Purpose .. 1-7
1.6.2. Components ... 1-7
1.6.3. Constraints ... 1-8
1.6.4. Libraries.. 1-8

1.7. System Manager.. 1-9
1.7.1. Purpose .. 1-9
1.7.2. Components ... 1-9
1.7.3. Constraints ... 1-14
1.7.4. Libraries.. 1-15

1.8. Location Server.. 1-15
1.8.1. Purpose .. 1-15
1.8.2. Components ... 1-15
1.8.3. Constraints ... 1-15
1.8.4. Libraries.. 1-16
1.8.5. Referenced Data Types ... 1-16

ii April 1999 HPSS Programmer’s Ref., Vol. 2
Ref. 0

2. Name Server Functions.. 2-1

2.1. API Functions... 2-1
2.1.1. ns_Delete ... 2-2
2.1.2. ns_DeleteACL .. 2-5
2.1.3. ns_DeleteFileset... 2-8
2.1.4. ns_GetACL... 2-10
2.1.5. ns_GetAttrs .. 2-12
2.1.6. ns_GetFilesetAttrs.. 2-15
2.1.7. ns_GetFilesetByNameOrId .. 2-17
2.1.8. ns_GetName .. 2-19
2.1.9. ns_Insert... 2-21
2.1.10. ns_MkDir .. 2-25
2.1.11. ns_MkFileset .. 2-28
2.1.12. ns_MkJunction ... 2-31
2.1.13. ns_MkLink .. 2-34
2.1.14. ns_MkSymLink ... 2-37
2.1.15. ns_NSGetAttrs ... 2-40
2.1.16. ns_NSSetAttrs .. 2-42
2.1.17. ns_ReadDir... 2-44
2.1.18. ns_ReadFilesetAttrs ... 2-47
2.1.19. ns_ReadGlobalFilesets .. 2-49
2.1.20. ns_ReadJunctionPathNames... 2-52
2.1.21. ns_ReadLink .. 2-54
2.1.22. ns_Rename .. 2-56
2.1.23. ns_ServerGetAttrs.. 2-59
2.1.24. ns_ServerSetAttrs .. 2-61
2.1.25. ns_SetACL ... 2-63
2.1.26. ns_SetAttrs ... 2-65
2.1.27. ns_SetFilesetAttrs .. 2-68
2.1.28. ns_Statistics ... 2-70
2.1.29. ns_UpdateACL ... 2-72

2.2. Data Definitions.. 2-75
2.2.1. Access Control List Conformant Array - ns_ACLConfArray_t 2-75
2.2.2. Access Control List Entry - ns_ACLEntry_t 2-75
2.2.3. Attribute Bit Map - ns_AttrBits_t ... 2-76
2.2.4. Name Server Directory Entry - ns_DirEntry_t................................... 2-80
2.2.5. Name Server Fileset Bit Map - ns_FilesetAttrBits_t 2-81
2.2.6. Name Server Fileset Attrs structure - ns_FilesetAttrs_t 2-82
2.2.7. Name Server FilesetAttrs Conformant Array -

ns_FilesetAttrsConfArray_t... 2-83
2.2.8. Name Server FilesetAttrs Entry - ns_FilesetAttrsEntry_t.................. 2-84
2.2.9. Name Server Global Fileset Conformant Array -

ns_GFilesetConfArray_t ... 2-85
2.2.10. Name Server GlobalFileset Entry - ns_GlobalFilesetEntry_t............ 2-85
2.2.11. Name Server Junction Path Conformant Array -

ns_JunctionPathConfArray_t.. 2-86
2.2.12. Name Server Junction Path Entry - ns_JunctionPathEntry_t 2-87

HPSS Programmer’s Ref., Vol. 2 April 1999 iii
Rev. 0

2.2.13. Name Server Object Handle - ns_ObjHandle_t 2-87
2.2.14. Name Server Return Structure - ns_RemaingPath_t....................... 2-88
2.2.15. Name Server Configuration - ns_SpecificConfig_t........................... 2-89
2.2.16. Name Server Statistics Structure - ns_StatisticsRec_t 2-92

3. Bitfile Server Functions ... 3-1

3.1. API Functions... 3-1
3.1.1. bfs_BitfileGetAttrs... 3-2
3.1.2. bfs_BitfileGetXAttrs .. 3-4
3.1.3. bfs_BitfileOpenGetAttrs.. 3-6
3.1.4. bfs_BitfileOpenSetAttrs .. 3-8
3.1.5. bfs_BitfileSetAttrs ... 3-10
3.1.6. bfs_BitfileOpenSetCosByHints ... 3-12
3.1.7. bfs_Clear .. 3-14
3.1.8. bfs_Close ... 3-16
3.1.9. bfs_CopyFile... 3-18
3.1.10. bfs_Create.. 3-20
3.1.11. bfs_GetCOSStats.. 3-22
3.1.12. bfs_Migrate... 3-24
3.1.13. bfs_Open.. 3-26
3.1.14. bfs_Purge ... 3-29
3.1.15. bfs_Read .. 3-31
3.1.16. bfs_ServerGetAttrs... 3-33
3.1.17. bfs_ServerSetAttrs .. 3-34
3.1.18. bfs_Stage ... 3-36
3.1.19. bfs_StageCallBack ... 3-38
3.1.20. bfs_Unlink... 3-40
3.1.21. bfs_Write .. 3-42
3.1.22. Bitfile Volatile and Metadata Attributes - bf_attrib_t.......................... 3-44
3.1.23. Bitfile Metadata Attributes - bf_attrib_md_t 3-45
3.1.24. Bitfile Descriptor - bf_descriptor_md_t ... 3-47
3.1.25. Bitfile Storage Level Statistics - bf_level_stats_md......................... 3-48
3.1.26. Bitfile Managed Object Data Structure - bfMO_attrib_t 3-49
3.1.27. Bitfile Open Context - bf_open_context.. 3-49
3.1.28. Bitfile Open Context List - bf_open_context_list_t............................ 3-51
3.1.29. Bitfile Open Context Header - bf_open_context_hdr_t..................... 3-51
3.1.30. Bitfile Tape Segment Metadata - bf_tape_segment_md_t............... 3-52
3.1.31. Bitfile Disk Segment Metadata - bf_disk_segment_md_t 3-53
3.1.32. Bitfile Disk Segment Region - bf_disk_region_md_t 3-54
3.1.33. Bitfile Disk Allocation Map Metadata - bf_disk_alloc_rec_md_t...... 3-55
3.1.34. Class of Service - hpss_cos_md_t... 3-56
3.1.35. Class of Service Hints - hpss_cos_hints_t 3-58
3.1.36. Class of Service Priorities - hpss_cos_priorities_t 3-59
3.1.37. Owner Record - bfs_owner_rec_t .. 3-61
3.1.38. Request Attributes - req_attrib_t .. 3-61
3.1.39. Reverse Map Field - rev_map_t ... 3-62

iv April 1999 HPSS Programmer’s Ref., Vol. 2
Ref. 0

3.1.40. Bitfile Cache Entry - bf_cache_entry_t ... 3-63
3.1.41. Bitfile Cache Hash - bf_cache_hash_t ... 3-64
3.1.42. Bitfile Segments Cache Entry - bf_segments_cache_entry_t 3-65
3.1.43. Storage Segment Delete Entry - sseg_delete_entry_t 3-66
3.1.44. Current Bitfile Segment Information - current_segment_info_t 3-66
3.1.45. Bitfile Disk Map - bf_disk_map_t.. 3-67
3.1.46. Bitfile Server Connect Context - bfs_connect_context_t 3-68
3.1.47. HPSS Segment List - hpss_segment_list_t...................................... 3-69
3.1.48. HPSS Segment Descriptor - hpss_segment_desc_t 3-69
3.1.49. HPSS Background Stage CallBack Structure - bfs_callback_addr_t3-70

3.2. Other Interfaces (OFD and Request list) .. 3-70
3.2.1. hpss_InitOfdMgr ... 3-71
3.2.2. hpss_GetOfd .. 3-72
3.2.3. hpss_FreeOfd... 3-74
3.2.4. hpss_CloseAllOfds ... 3-75
3.2.5. hpss_CleanupOfds... 3-76
3.2.6. hpss_InitOfdList.. 3-77
3.2.7. hpss_ReqListDeleteEntry... 3-78
3.2.8. hpss_ReqListFindReqId ... 3-79
3.2.9. hpss_ReqListInit ... 3-80
3.2.10. hpss_ReqListInsertEntry .. 3-81
3.2.11. hpss_ReqListNextEntry.. 3-82
3.2.12. hpss_ReqListSetState.. 3-83

3.3. Other Data Definitions (OFD and request list) .. 3-84
3.3.1. HPSS Open File Descriptor (OFD) - hpss_ofd_t.............................. 3-84
3.3.2. HPSS Open File Descriptor List Header - hpss_ofd_hdr_t 3-85
3.3.3. Request List - hpss_reqlist_t ... 3-86
3.3.4. Request List Entry - hpss_reqlist_entry_t... 3-86

4. Storage Server Functions .. 4-1

4.1. API Functions... 4-1
4.1.1. ss_BeginSession.. 4-2
4.1.2. ss_EndSession... 4-4
4.1.3. ss_GetStorageClassStats .. 4-6
4.1.4. ss_GetWaitingEvents ... 4-8
4.1.5. ss_MapCreate .. 4-10
4.1.6. ss_MapDelete... 4-12
4.1.7. ss_MapGetAttrs.. 4-13
4.1.8. ss_MapSetAttrs .. 4-14
4.1.9. ss_PVCreate .. 4-16
4.1.10. ss_PVDelete... 4-18
4.1.11. ss_PVGetAttrs.. 4-19
4.1.12. ss_PVMount ... 4-21
4.1.13. ss_PVRead... 4-23
4.1.14. ss_PVSetAttrs .. 4-25
4.1.15. ss_PVUnmount .. 4-27

HPSS Programmer’s Ref., Vol. 2 April 1999 v
Rev. 0

4.1.16. ss_PVWrite... 4-28
4.1.17. ss_ServerGetAttrs .. 4-30
4.1.18. ss_ServerSetAttrs .. 4-31
4.1.19. ss_SSCopySegment .. 4-33
4.1.20. ss_SSCreate .. 4-35
4.1.21. ss_SSDelete... 4-38
4.1.22. ss_SSDeleteList ... 4-40
4.1.23. ss_SSGetAttrs.. 4-42
4.1.24. ss_SSMount ... 4-43
4.1.25. ss_SSMoveSegment.. 4-45
4.1.26. ss_SSRead... 4-47
4.1.27. ss_SSrvGetAttrs... 4-49
4.1.28. ss_SSrvSetAttrs ... 4-50
4.1.29. ss_SSSetAttrs .. 4-52
4.1.30. ss_SSStartMount.. 4-54
4.1.31. ss_SSUnlink ... 4-56
4.1.32. ss_SSUnmount .. 4-58
4.1.33. ss_SSWrite... 4-59
4.1.34. ss_VVCreate .. 4-61
4.1.35. ss_VVDelete... 4-63
4.1.36. ss_VVGetAttrs.. 4-65
4.1.37. ss_VVMount ... 4-67
4.1.38. ss_VVRead... 4-69
4.1.39. ss_VVSetAttrs .. 4-71
4.1.40. ss_VVUnmount .. 4-73
4.1.41. ss_VVWrite... 4-74

4.2. Data Definitions.. 4-76
4.2.1. Storage Server Attribute Record - ssrv_attr_t 4-76
4.2.2. Storage Segment Record - storage_segment_record_t 4-77
4.2.3. Storage Segment Attribute Record - ss_attr_t 4-79
4.2.4. Storage Segment Metadata - storage_segment_md_t 4-80
4.2.5. Storage Map Record - storage_map_record_t................................. 4-82
4.2.6. Storage Map Attribute Record - ss_map_attr_t................................ 4-84
4.2.7. Tape Storage Map Metadata - storage_map_md_t 4-84
4.2.8. Disk Storage Map Metadata... 4-87
4.2.9. Virtual Volume Record - virtual_volume_record_t............................ 4-88
4.2.10. Virtual Volume Attribute Record - vv_attr_t 4-91
4.2.11. Virtual Volume Metadata - virtual_volume_md_t.............................. 4-92
4.2.12. Physical Volume Record - physical_volume_record_t 4-95
4.2.13. Physical Volume Attribute Record - pv_attr_t................................... 4-98
4.2.14. Physical Volume Metadata - physical_volume_md_t 4-99
4.2.15. Device Table Record - device_table_record_t 4-102
4.2.16. Session Record - ss_session_t .. 4-103
4.2.17. Relative Address - relative_address_t.. 4-105
4.2.18. Composite Address - composite_address_t 4-105
4.2.19. Absolute Address - absolute_address_t... 4-106
4.2.20. Physical Volume List - pv_list_t .. 4-106

vi April 1999 HPSS Programmer’s Ref., Vol. 2
Ref. 0

4.2.21. Physical Volume List Element - pv_list_element_t........................... 4-106
4.2.22. Owner Record - owner_rec_t ... 4-107
4.2.23. Wait List - waitlist_t... 4-107
4.2.24. Storage Class Array - ss_class_array_t ... 4-108
4.2.25. Storage Class Array Element - ss_class_t 4-108
4.2.26. Event Array - ss_sclass_array_t... 4-109
4.2.27. Event Array Element - ss_event_rec_t ... 4-109
4.2.28. Segment Array.. 4-110
4.2.29. Delete segment array ... 4-110
4.2.30. Delete Segment Array Element .. 4-110
4.2.31. Copy Control Block... 4-111

5. Mover Functions... 5-1

5.1. API Functions... 5-1
5.1.1. mvr_Abort... 5-2
5.1.2. mvr_CreateDevice.. 5-3
5.1.3. mvr_DeleteDevice .. 5-5
5.1.4. mvr_DeviceGetAttrs ... 5-7
5.1.5. mvr_DeviceGetAttrs_IOD... 5-9
5.1.6. mvr_DeviceSetAttrs.. 5-10
5.1.7. mvr_DeviceSetAttrs_IOD ... 5-12
5.1.8. mvr_DeviceSpec .. 5-14
5.1.9. mvr_MVRGetAttrs .. 5-16
5.1.10. mvr_MVRSetAttrs... 5-17
5.1.11. mvr_Read... 5-19
5.1.12. mvr_ServerGetAttrs.. 5-21
5.1.13. mvr_ServerSetAttrs .. 5-22
5.1.14. mvr_Write... 5-24

5.2. Data Definitions.. 5-26
5.2.1. Mover State Structure - mover_attr_t ... 5-26
5.2.2. Device Descriptor - devdesc_attr_t .. 5-27
5.2.3. Mover Configuration Structure - mvr_config_t.................................. 5-32
5.2.4. Mover Protocol Message Structures .. 5-33

6. Physical Volume Library Functions.. 6-1

6.1. API Functions... 6-1
6.1.1. pvl_AllocateVol ... 6-2
6.1.2. pvl_CancelAllJobs .. 6-4
6.1.3. pvl_CreateDrive.. 6-5
6.1.4. pvl_DeallocateVol... 6-6
6.1.5. pvl_DeleteDrive .. 6-7
6.1.6. pvl_DismountDrive ... 6-8
6.1.7. pvl_DismountJobId... 6-9
6.1.8. pvl_DismountVolume ... 6-10
6.1.9. pvl_DriveGetAttrs ... 6-11
6.1.10. pvl_DriveSetAttrs.. 6-12

HPSS Programmer’s Ref., Vol. 2 April 1999 vii
Rev. 0

6.1.11. pvl_Export... 6-14
6.1.12. pvl_Import... 6-15
6.1.13. pvl_Mount ... 6-17
6.1.14. pvl_MountAdd... 6-19
6.1.15. pvl_MountCommit .. 6-21
6.1.16. pvl_MountCompleted.. 6-23
6.1.17. pvl_MountNew.. 6-25
6.1.18. pvl_Move .. 6-27
6.1.19. pvl_NotifyCartridge ... 6-29
6.1.20. pvl_PVLGetAttrs ... 6-31
6.1.21. pvl_PVLSetAttrs ... 6-32
6.1.22. pvl_QueueGetAttrs ... 6-34
6.1.23. pvl_QueueSetAttrs ... 6-35
6.1.24. pvl_RequestGetAttrs .. 6-37
6.1.25. pvl_RequestSetAttrs... 6-38
6.1.26. pvl_ServerGetAttrs ... 6-40
6.1.27. pvl_ServerSetAttrs.. 6-41
6.1.28. pvl_VolumeGetAttrs ... 6-43
6.1.29. pvl_VolumeSetAttrs .. 6-44
6.1.30. pvl_WriteVolumeLabel ... 6-46

6.2. Data Definitions.. 6-47
6.2.1. PVL Data Structure - pvl_data_t... 6-47
6.2.2. Queue Data Structure - api_queue_data_t 6-48
6.2.3. PVL Job Queue Entry - request_data_t.. 6-50
6.2.4. Cartridge ID Structure - cart_t .. 6-53
6.2.5. Volume Structure - vol_t... 6-54
6.2.6. Media Type Structure - media_type_t .. 6-54
6.2.7. Active Volume State Structure - activity_data_t 6-55
6.2.8. Activity Structure - activity_t.. 6-57
6.2.9. Client Information Structure - client_info_t 6-58
6.2.10. Job Data Structure - job_data_t ... 6-59
6.2.11. Job Entry Structure - job_ent_t... 6-61
6.2.12. Cartridge List Entry Structure - cart_ent_t .. 6-62
6.2.13. Volume Data Structure - vol_data_t ... 6-62
6.2.14. Drive Data Structure - drive_data_t .. 6-64
6.2.15. Drive Index - drive_index_t... 6-65
6.2.16. Drive ID - drive_t... 6-65
6.2.17. Drive Type - drive_type_t.. 6-66
6.2.18. Drive Type Entry - drive_type_ent_t ... 6-66
6.2.19. Job ID - job_id_t ... 6-67
6.2.20. PVR Index - pvr_index_t... 6-67
6.2.21. Queue Data - queue_data_t ... 6-67

6.3. Other Interfaces ... 6-69
6.3.1. ss_MountCallback .. 6-69

7. Physical Volume Repository Functions ... 7-1

viii April 1999 HPSS Programmer’s Ref., Vol. 2
Ref. 0

7.1. API Functions... 7-1
7.1.1. pvr_Audit .. 7-2
7.1.2. pvr_CartridgeGetAttrs .. 7-4
7.1.3. pvr_CartridgeSetAttrs ... 7-5
7.1.4. pvr_CheckIn ... 7-7
7.1.5. pvr_CheckOut .. 7-8
7.1.6. pvr_DismountCart .. 7-10
7.1.7. pvr_DismountDrive... 7-11
7.1.8. pvr_Eject... 7-12
7.1.9. pvr_Inject .. 7-14
7.1.10. pvr_ListAllCart .. 7-15
7.1.11. pvr_ListPendingMounts .. 7-17
7.1.12. pvr_Mount... 7-19
7.1.13. pvr_MountComplete ... 7-21
7.1.14. pvr_PVRGetAttrs .. 7-23
7.1.15. pvr_PVRSetAttrs .. 7-24
7.1.16. pvr_ServerGetAttrs... 7-26
7.1.17. pvr_ServerSetAttrs ... 7-27

7.2. Device Interfaces ... 7-29
7.2.1. device_Audit ... 7-29
7.2.2. device_Dismount.. 7-30
7.2.3. device_Eject ... 7-32
7.2.4. device_Init .. 7-33
7.2.5. device_Inject... 7-34
7.2.6. device_LocationToString.. 7-35
7.2.7. device_Mount ... 7-36
7.2.8. device_MountComplete.. 7-38
7.2.9. device_Release.. 7-39
7.2.10. device_SetDrive ... 7-40

7.3. Data Definitions.. 7-41
7.3.1. Cartridge Side - side_t.. 7-41
7.3.2. drive_addr_t.. 7-41
7.3.3. ioport_addr_t .. 7-41
7.3.3. location_t .. 7-42
7.3.4. cart_data_t.. 7-42
7.3.5. pvr_data_t... 7-45
7.3.6. Manufacturing Lot Number - lot_number_t 7-46
7.3.7. Cartridge Manufacturer - manufacturer_t... 7-46
7.3.8. Check-in request - checkin_req_t .. 7-46
7.3.9. Other APIs .. 7-48

7.3.9.1. pvl_MountCompleted .. 7-48

8. System Manager Functions ... 8-1

8.1. API Functions... 8-1
8.1.1. ssm_AcctChange ... 8-2
8.1.2. ssm_AcctRun ... 8-4

HPSS Programmer’s Ref., Vol. 2 April 1999 ix
Rev. 0

8.1.3. ssm_Adm ... 8-5
8.1.4. ssm_AttrGet ... 8-8
8.1.5. ssm_AttrReg... 8-10
8.1.6. ssm_AttrSet.. 8-12
8.1.7. ssm_CartExport.. 8-14
8.1.8. ssm_CartImport.. 8-16
8.1.9. ssm_CartMove ... 8-18
8.1.10. ssm_CheckIn.. 8-20
8.1.11. ssm_CheckOut... 8-22
8.1.12. ssm_ConfigAdd .. 8-24
8.1.13. ssm_ConfigDelete .. 8-26
8.1.14. ssm_ConfigGetDefault ... 8-28
8.1.15. ssm_ConfigRead.. 8-31
8.1.16. ssm_ConfigUpdate... 8-33
8.1.17. ssm_Delog ... 8-35
8.1.18. ssm_DriveDismount ... 8-37
8.1.19. ssm_FilesetCreate ... 8-39
8.1.20. ssm_FilesetDelete.. 8-41
8.1.21. ssm_JobCancel.. 8-43
8.1.22. ssm_JunctionCreate... 8-45
8.1.23. ssm_JunctionDelete ... 8-47
8.1.24. ssm_ResourceCreate... 8-49
8.1.25. ssm_ResourceDelete ... 8-51
8.1.26. ssm_ResourceReclaim .. 8-53
8.1.27. ssm_ResourceRepack ... 8-55

8.2. APIs Available to the Other HPSS Subsystems .. 8-57
8.2.1. ssm_BitfileNotify... 8-58
8.2.2. ssm_CartNotify... 8-60
8.2.3. ssm_DeviceNotify... 8-62
8.2.4. ssm_DMGFilesetNotify... 8-64
8.2.5. ssm_DMGNotify ... 8-66
8.2.6. ssm_DriveNotify ... 8-68
8.2.7. ssm_LogFileNotify.. 8-70
8.2.8. ssm_LogMsgNotify... 8-72
8.2.9. ssm_LSStatsNotify ... 8-73
8.2.10. ssm_MPSNotify.. 8-75
8.2.11. ssm_MPS_SClassNotify .. 8-77
8.2.12. ssm_MVRNotify.. 8-79
8.2.13. ssm_MapNotify... 8-81
8.2.14. ssm_MountNotify.. 8-83
8.2.15. ssm_NFS2_StatsNotify .. 8-85
8.2.16. ssm_NSFilesetNotify .. 8-87
8.2.17. ssm_NSNotify... 8-89
8.2.18. ssm_PVLNotify... 8-91
8.2.19. ssm_PVNotify... 8-93
8.2.20. ssm_PVRNotify .. 8-95
8.2.21. ssm_QueueNotify... 8-97

x April 1999 HPSS Programmer’s Ref., Vol. 2
Ref. 0

8.2.22. ssm_RequestNotify .. 8-99
8.2.23. ssm_SFSNotify... 8-101
8.2.24. ssm_SSNotify... 8-103
8.2.25. ssm_ServerNotify ... 8-105
8.2.26. ssm_SsrvNotify .. 8-107
8.2.27. ssm_TapeCheckInNotify .. 8-109
8.2.27. ssm_VVNotify... 8-111
8.2.28. ssm_VolNotify... 8-113

8.3. Data Definitions.. 8-115
8.3.1. Data Common to the System Manager and the Data Server........... 8-115

8.3.1.1. Significant constants ... 8-115
8.3.1.2. Server List - ServerList_t... 8-115
8.3.1.3. Drive List - DriveList_t ... 8-119
8.3.1.4 Class of Service List - COSList_t .. 8-120
8.3.1.5. Storage Class List - SClassList_t .. 8-121
8.3.1.6. Hierarchy List - HierList_t .. 8-122
8.3.1.7. Migration Policy List - MigrPList_t ... 8-123
8.3.1.8. Purge Policy List - PurgPList_t .. 8-123
8.3.1.9. Notification Structure - NotifyUnion_t 8-124
8.3.1.10. Server Info Data Structure - SrvInfoUnion_t 8-124
8.1.3.11. Drive Data ID - DriveDataID_t ... 8-132
8.3.1.12. Drive Data for Configuration Operations - DriveData_t........... 8-133
8.3.1.13. Cartridge Import Data - PvlImport_t .. 8-133
8.3.1.14. Storage Server Resource Data Structure - SsResources_t.... 8-135
8.3.1.15. Storage Server Repack Structure - SsRepack_t..................... 8-135
8.3.1.16. Storage Server Reclaim Structure - SsReclaim_t 8-136
8.3.1.17. ClientID.. 8-137

8.3.2. Data Private to the System Manager.. 8-137
8.3.2.1. Table of Registered Clients - client_list_t 8-137
8.3.2.2. Server Network Connection Table - server_net_t 8-139
8.3.2.3. Table of Registered Managed Object Attributes -
registered_mo_t.. 8-141
8.3.2.4. Notification Queues ... 8-142
8.3.2.5. Configuration File List - config_file_list_t................................. 8-144
8.3.2.6. Copy of the HPSS Server Configuration File -
server_config_list_t ... 8-145
8.3.2.7. Condition Variable Structure - condition_variable_t 8-146
8.3.2.8. Drive Data Structure - DriveDataID_t 8-146
8.3.2.9. Bitfile ID Register Structure - ssm_bitfile_reg_id_t.................. 8-146
8.3.2.10. Descriptive Name - ssm_descname_t 8-147
8.3.2.11. Bitfile Object ID - ssm_file_id_t ... 8-147
8.3.2.12. Log File Object ID - ssm_logfile_t ... 8-147
8.3.2.13. Storage Server PV Object ID - ssm_ss_pv_t 8-148
8.3.2.14. Site List – SiteList_t... 8-148
8.3.2.15. File Family Structure – FileFamilyStruct_t............................... 8-149
8.3.2.16. File Family List – FileFamilyList_t.. 8-149
8.3.2.17. File Attribute Structure – ssm_fileattr_t 8-149

HPSS Programmer’s Ref., Vol. 2 April 1999 xi
Rev. 0

8.3.2.18. Logging Daemon Logfile Name Structure – ssm_logfile_t...... 8-150
8.3.2.19. HDM Fileset Identification Structure – ssm_hdm_fileset_id_t. 8-150
8.3.2.20. Name Server Fileset Information Structure –
ssm_ns_fileset_t ... 8-151
8.3.2.21. Fileset Name Structure – ssm_fileset_name_t 8-151
8.3.2.22. DMAP Gateway Fileset Structure – ssm_dmg_fileset_t 8-151

8.4. Data Server Client Interfaces... 8-153
8.4.1. client_Notify .. 8-154

8.5. Other Data Definitions (Data Server Clients) ... 8-156
8.5.1. Data Server Notification structure - NotifyUnion_t............................ 8-156

9. Location Server Functions .. 9-1

9.1. Client Cache Programming Interface Functions.. 9-1
9.1.1. hpss_LocateBFSByCOSHints .. 9-2
9.1.2. hpss_LocateLocationServer... 9-4
9.1.3. hpss_LocateRootNS .. 9-5
9.1.4. hpss_LocateServerByPath ... 9-6
9.1.5. hpss_LocateServerByUUID.. 9-7
9.1.6. hpss_LocationLibInit... 9-8
9.1.7. hpss_LocationLibDeinit .. 9-9
9.1.8. hpss_LocationLibGetConfig ... 9-10
9.1.9. hpss_LocationLibSetConfig.. 9-11

9.2. Server Programming Interface Functions.. 9-12
9.2.1. ls_BFSByCOSHints.. 9-13
9.2.2. ls_GetServerMaps.. 9-15
9.2.3. ls_LocationServer... 9-17
9.2.4. ls_RootNS .. 9-18
9.2.5. ls_ServerByPath... 9-19
9.2.6. ls_ServerByUUID ... 9-20
9.2.7. ls_ServerGetAttrs ... 9-21
9.2.8. ls_ServerSetAttrs.. 9-22
9.2.9. ls_StatGetAttrs ... 9-23
9.2.10. ls_StatSetAttrs.. 9-24

9.3. Data Definitions.. 9-25
9.3.1. Location Map Structure – ls_map_t.. 9-25
9.3.2. Location Map Array – ls_map_array_t.. 9-26
9.3.3. COS/BFS Selection Structure – ls_cos_bfs_t 9-26
9.3.4. COS/BFS Array Structure – ls_cos_bfs_array_t 9-27
9.3.5. Location Server Statistics Structure – ls_server_stats_t 9-27
9.3.6. Location Policy Metadata Structure – ls_policy_md_t 9-30
9.3.7. Remote HPSS Site Metadata Structure – hpss_site_md_t 9-31

Appendix A - Acronyms... A-1

Appendix B - References... B-1

xii April 1999 HPSS Programmer’s Ref., Vol. 2
Ref. 0

Preface

This High Performance Storage System (HPSS) Programmer’s Reference Guide, Volume 2 - Release
4.1.1, documents core server function calls which are provided by HPSS. It is designed for systems
programmers.

HPSS provides an open interface with application programming interfaces to each HPSS server. Volume
2 documents these function calls interfaces to the core HPSS servers. While it is envisioned that most
users will access HPSS through the client API, standard FTP, parallel FTP, NFS, DFS, MPI-IO or the
Parallel I/O File System Import / Export interfaces, well defined programming interfaces are also defined
to each HPSS server. It should be noted that programming to the individual server level is a more complex
programming model which requires a greater understanding of the HPSS servers.

It is beyond the scope of this document to provide detailed information on programming at the individual
server level. The API specifications and related data structures are documented for the core HPSS
servers. However, it should be realized that programming at the inter-server level will require more of a
working knowledge of HPSS internals than the Client APIs documented in Volume 1. In addition, internal
infrastructure APIs (e.g. logging, metadata manager, DCE services, communications), and APIs for those
servers which are unlikely candidates for application programming (e.g. Storage System Manager,
Migration Purge Server) are not included in this document.

The objective of this document is to meet the following general goals:

• Define any known limitations of the APIs

• Define the HPSS server application programming interfaces (APIs).

• Define the data definitions referenced by the APIs

Refer to the HPSS Programmer’s Reference Volume 1 for programming interfaces provided to the end
user. Refer to the HPSS User’s Guide for command interfaces provided to end users.

Refer to the HPSS User’s Guide for a description of the following command line interfaces: standard FTP,
parallel FTP, NFS, DFS, IBM SP Parallel I/O File System Import / Export, and user utilities.

Refer to the HPSS Error Messages Manual for a list of all HPSS error and advisory messages which are
output by the HPSS software. For each message, the following information is provided: message
identifier and text, source file name(s) which generated the message, problem description, system action,
and administrator action.

Refer to the HPSS Administration Guide for a description of the interfaces provided to HPSS
administrators.

This HPSS Programmer’s Reference Guide, Volume 2 is structured as follows:

Chapter 1: Overview This chapter provides an overview of each core
server programming interface, constraints, and
required libraries.

Chapter 2: Name Server Functions This chapter defines the Name Server API
specifications and associated data definitions..

HPSS Programmer’s Ref., Vol. 2 April 1999 xiii
Rev. 0

Chapter 3: Bitfile Server Functions This chapter defines the Name Server API
specifications and associated data definitions..

Chapter 4: Storage Server Functions This chapter defines the Name Server API
specifications and associated data definitions..

Chapter 5: Mover Functions This chapter defines the Mover API
specifications and associated data definitions..

Chapter 6: Physical Volume Library Functions This chapter defines the Physical Volume
Library API specifications and associated data
definitions..

Chapter 7: Physical Volume Repository Functions This chapter defines the Physical Volume
Repository specifications and associated data
definitions..

Chapter 8: Storage System Manager Functions This chapter defines the System Manager API
specifications and associated data definitions.

Chapter 9: Location Server Functions This chapter defines the Location Server API
specifications and associated data definitions.

Appendix A: Acronyms This appendix provides a list of acronyms used
document.

Appendix B: References This appendix lists documents cited in the text
as other reference material.

Typographic and Keying Conventions

This document uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use literally, such as
functions, commands or keywords.

Italic Italic words or characters represent variable values to be supplied.

[] Brackets enclose optional items in syntax and format descriptions.

{ } Braces enclose a list of items to select in syntax and format descriptions.

Chapter 1: Overview

HPSS Programmer’s Ref., Vol. 2 April 1999 1-1
Rev. 0

1. Overview

The High Performance Storage System (HPSS) provides scalable parallel storage systems for highly
parallel computers as well as traditional supercomputers and workstation clusters. Concentrating on
meeting the high end of storage system and data management requirements, HPSS is scalable and is
designed for large storage capacities, and to use network-connected storage devices to transfer data at
rates up to multiple gigabytes per second. Listed below is a description of the core HPSS servers.

1.1. Name Server

1.1.1. Purpose

The purpose of the Name Server is to map a name to an HPSS object. Names are generally human
readable ASCII strings of 255 characters or less. Objects are files, directories, junctions, filesets, or links
(symbolic links and hard links). In addition to mapping names to objects, the Name Server provides
access verification to objects. The implementation defined in this design document provides a POSIX
view of the name space which is a hierarchical structure consisting of directories, files, junctions and links.

1.1.2. Components

The Name Server uses a layered approach to inter-routine relationships. The software is layered as
defined below:

• Remote Interface Routines (RIR)

• Local Interface Routines (LIR)

• Database Interface Routines (DIR)

• System Interface Routines (SIR)

The RIR layer handles transaction processing, security functions and translates remotely invoked
functions to the appropriate local interface routine. This layer is also responsible for parsing path names
and implementing the "." and ".." directories. The LIR handle the requested function and make use of the
DIR layer to retrieve and store directory object metadata. The DIR layer makes use of Transarc’s Encina
Structured File System.

1.1.3. Constraints

The following constraints are being imposed upon HPSS as a result of this subsystem design:

• Hard links are only supported for files.

1.1.4. Libraries

Applications calling the Name Server function calls must link with the following libraries:

libmetadata.a
libhpsscs.a
libhpsscomm.a

Chapter 1: Overview

1-2 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

libhpsslog.a
libgss.a
libhsec.a
libhandles.a
libEncina.a
libEncClient.a
libEncSfs.a
libdce.a
libpthreads.a

1.2. Bitfile Server

1.2.1. Purpose

The Bitfile Server provides the abstraction of logical bitfiles to its clients. A logical bitfile is a bit string that
is unconstrained in size and structure. A bitfile is identified by a Bitfile Server generated name called a
bitfile ID. Mapping of a human readable name to the bitfile ID must be provided by a Name Server
external to the Bitfile Server. Clients may reference portions of a bitfile by specifying the bitfile ID and a
starting address and length. The writes and reads to a bitfile are random and the writes may leave "holes"
where no data has been written. The Bitfile Server supports the parallel read and write of data to bitfiles.
In conjunction with Storage Servers, the Bitfile Server maps logical portions of bitfiles onto physical
storage devices.

The Bitfile Server provides commands to allow the migration, purging, and staging of data in a storage
hierarchy.

1.2.2. Bitfile Server Components

The Bitfile Server consists of these major parts:

• Initialization

• Client APIs

• Storage System Management APIs.

Initialization starts up the Bitfile Server, makes connections needed to other servers, and sets up internal
tables.

Client APIs are essentially the user interface to the Bitfile Server. They allow bitfiles to be created, stored,
read, and allow bitfile attributes to be read and set.

Various APIs are used by both clients and SSM.

1.2.3. Constraints

The following constraints are being imposed upon HPSS as a result of this subsystem design:

• All transfer requests are for single bitfiles only. The multiple bitfiles allowed by the IOD will not be
supported.

Chapter 1: Overview

HPSS Programmer’s Ref., Vol. 2 April 1999 1-3
Rev. 0

• Files that are highly fragmented will cause system performance to be degraded.

• The bitfile must be open to do reads, writes, migrates, stages, purges, and various options of get
and set attributes.

• A reverse map field of all binary zeros is considered to be a null reverse map.

1.2.4. Libraries

Applications calling the Bitfile Server function calls must link with the following libraries:

libmetadata.a
libhpsscs.a
libhpsscomm.a
libhpsslog.a
libhpssgss.a
libhsec.a
libhandles.a
libtraniod.a
libEncina.a
libEncClient.a
libEncSfs.a
libdce.a
libpthreads.a

1.3. Storage Server

1.3.1. Purpose

The Storage Server provides a hierarchy of storage objects: storage segments, virtual volumes and
physical volumes. The server translates references to storage segments into references to virtual
volumes, and finally into physical volume references. It also schedules the mounting and dismounting of
removable media. Clients of the Storage Server will be the HPSS Bitfile Server at the segment interface
and the HPSS Storage System Manager at the virtual and physical volume interface.

1.3.2. Components

The Storage Server consists of these major parts:

• storage segment service

• virtual volume service

• physical volume service

The storage segment service is the conventional method for obtaining and accessing HPSS storage
resources. The server maps an abstract storage space, the storage segment, onto a virtual volume,
resolving segment addresses as required. The client is presented with a storage address space, with
addresses from 0 to N-1, where N is the byte length of the segment. Segments can be opened, created,
read, written, closed and deleted. Characteristics and information about segments can be retrieved and
changed.

Chapter 1: Overview

1-4 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The virtual volume service is the method provided by the Storage Server to group physical storage
volumes. The server maps the virtual volume address space onto the component physical volumes in a
fashion appropriate to the grouping. The client is presented with a virtual volume that can be addressed
from 0 to N-1, where N is the byte length of the virtual volume. Virtual volumes can be mounted, created,
read, written, unmounted and deleted. Characteristics of the volume can be retrieved and in some cases,
changed.

The physical volume service is the method provided by the Storage Server to access the physical storage
volumes in HPSS. Physical volumes can be mounted, created, read, written, unmounted and deleted.
Characteristics of the volume can be retrieved and in some cases, changed.

All three layers of the Storage Server can be accessed by appropriately privileged clients.

1.3.3. Constraints

The following constraints are being imposed upon HPSS as a result of this subsystem design:

• A storage segment cannot span virtual volumes.

• A physical volume cannot span multiple virtual volumes.

• Intermediate IORs for I/O requests will not be generated or provided by the Storage Server. I/O
functions (read and write) are synchronous (e.g. They do not reply until the I/O is complete; however,
it is possible for the client to issue parallel I/O requests to the server).

1.3.4. Libraries

Applications calling the Storage Server function calls must link with the following libraries:

libmetadata.a
libhpsscs.a
libhpsscomm.a
libhpsslog.a
libhpssgss.a
libhsec.a
libhandles.a
libtraniod.a
libgssmvr.a
libpdata.a
libpvl.a
libEncina.a
libEncClient.a
libEncSfs.a
libdce.a
libpthreads.a

1.4. Mover

1.4.1. Purpose

Chapter 1: Overview

HPSS Programmer’s Ref., Vol. 2 April 1999 1-5
Rev. 0

The purpose of the Mover is to transfer data from a source device to a sink device. A device can be a
standard I/O device with geometry (e.g., tape, disk, optical disk), or a device without geometry (e.g.,
network, memory). The Mover will retry requests and attempt to optimize requests, but will not take any
action that is outside the scope of what is requested by the Mover’s clients.

Additional support is provided for:

Disk devices.

Third party IPI-3 data transfers.

Sending intermediate responses with listen port addressing information.

Using a Mover to Mover data transfer control protocol.

1.4.2. Components

The Mover consists of these major parts:

• Mover Parent Task

• Mover Listen Task / Request Processing Task

• Data Movement

• Device Control

• System Management

The Mover Parent Task performs some of the Mover initialization functions, and spawns processes to
handle the Mover's DCE communications as well as the Mover's functional interface (which does not use
DCE pthreads).

The Mover Listen Task listens on a well known TCP port for incoming connections to the Mover, spawns
request processing tasks (forks processes in Releases 1 and 2), and monitors for completion of those
tasks. The Request Processing Task performs initialization and return functions common to all Mover
requests.

Data Movement supports client requests to transfer data to or from HPSS, and includes the mvr_Read
and mvr_Write interfaces. The ability to abort an outstanding data movement request is provided via the
mvr_Abort interface.

Device Control supports querying the current device read/write position (for use in a later search
operation), changing the current device read/write position and performing device specific operations, and
includes the mvr_DeviceGetAttrs_IOD, mvr_DeviceSetAttrs_IOD and mvr_DevSpec interfaces.

System Management supports querying and altering device characteristics and overall Mover state, and
includes the mvr_MVRGetAttrs, mvr_MVRSetAttrs, mvr_DeviceGetAttrs, mvr_DeviceSetAttrs,
mvr_ServerGetAttrs and mvr_ServerSetAttrs interfaces. Also supported is adding new devices and
removing existing devices via the mvr_CreateDevice and mvr_DeleteDevice interfaces.

1.4.3. Constraints

The following constraints are being imposed upon HPSS as a result of this subsystem design:

Chapter 1: Overview

1-6 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

• Due to conflicts between DCE and asynchronous I/O (in particular using DCE results in the
possibility of lost signals), the Mover data transfer and device positioning code will not use either
DCE RPC or DCE pthreads. Instead, the Mover will use the DCE marshalling routines and transfer
requests and replies over TCP streams.

• A process that utilizes DCE RPC and Pthreads will be spawned at Mover initialization to handle non
I/O requests (e.g., Mover state requests). Note that this requires that all machines running an HPSS
Mover also run DCE and Encina.

1.4.4. Libraries

Applications calling the Mover function calls must link with the following libraries:

libmetadata.a
libhpsscs.a
libhpsscomm.a
libhpsslog.a
libhpssgss.a
libhsec.a
libhandles.a
libEncina.a
libEncClient.a
libEncSfs.a
libdce.a
libpthreads.a

1.5. Physical Volume Library

1.5.1. Purpose

The PVL manages all HPSS physical volumes. Clients can ask the PVL to mount and dismount sets of
physical volumes. Clients can also query the status and characteristics of physical volumes. The PVL
maintains a mapping of physical volume to cartridge and a mapping of cartridge to PVR. The PVL also
controls all allocation of drives. When the PVL accepts client requests for volume mounts, the PVL
allocates resources to satisfy the request. When all resources are available, the PVL issues commands
to the PVR(s) to mount cartridges in drives. The client is notified when the mount has completed.

1.5.2. Components

The PVL consists of these major parts:

• Volume mount service

• Storage system management service

The volume mount service is provided to clients like a Storage Server. Multiple volumes may be specified
as part of a single request. All of the volumes will be mounted before the request is satisfied. All volume
mount requests from all clients are handled by the PVL. This allows the PVL to prevent multiple clients
from deadlocking when trying to mount intersecting sets of volumes. The standard mount interface is
asynchronous. A notification is provided to the client when the entire set of volumes has been mounted.
A synchronous mount interface is also provided. The synchronous interface can only be used to mount a

Chapter 1: Overview

HPSS Programmer’s Ref., Vol. 2 April 1999 1-7
Rev. 0

single volume, not sets of volumes. The synchronous interface might be used by a non-HPSS process to
mount cartridges which are in a tape library, but not part of the HPSS system.

The storage system management service is provided to allow a management client control over HPSS
tape repositories. Interfaces are provided to import, export, and move volumes. When volumes are
imported into HPSS, the PVL is responsible for writing a label to the volume. This label can be used to
confirm the identity of the volume every time it is mounted. Management interfaces are also provided to
query and set the status of all hardware managed by the PVL (volumes, drives, and repositories).

1.5.3. Constraints

The following constraints are being imposed upon HPSS as a result of this subsystem design:

• No attempt is made to optimize volume mounts. They are satisfied on a first come, first served
basis. If a volume is mounted before it is requested by the PVL it may be used out of the normal
order unless the PVL determines that such use might result in a deadlock.

• Volume names are derived from the cartridge name and the side of the cartridge. Cartridge names
must be unique across an entire HPSS installation.

1.5.4. Libraries

Applications calling the Physical Volume Library function calls must link with the following libraries:

libpvl.a
libmetadata.a
libhpsscs.a
libhpsscomm.a
libhpsslog.a
libhpssgssmvr.a
libhsec.a
libhandles.a
libEncina.a
libEncClient.a
libEncSfs.a
libdce.a
libpthreads.a

1.6. Physical Volume Repository

1.6.1. Purpose

The PVR manages all HPSS cartridges. Clients can ask the PVR to mount and dismount cartridges.
Every cartridge in HPSS must be managed by exactly one PVR. Clients can also query the status and
characteristics of cartridges.

1.6.2. Components

The PVR consists of these major parts:

Chapter 1: Overview

1-8 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

• Generic PVR service

• Ampex robot service

• STK robot service

• 3494 / 3495 robot service

• Operator mounted device service

The generic PVR service provides a common set of APIs to the client regardless of the type of mount
device being managed. Functions to mount, dismount, inject, and eject cartridges are provided.
Additional functions to query and set cartridge metadata are provided. The mount function is
asynchronous. The PVR calls a well-known API in the client when the mount has completed. For certain
devices, like operator mounted repositories, the PVR will not know when the mount has completed. In this
case, it is up to the client to determine when the mount has completed. The client may poll the devices or
use some other method. When the client determines a mount has completed, the client should notify the
PVR using one of the PVR’s APIs. All other PVR functions are synchronous. The generic PVR maintains
metadata for each cartridge managed by the PVR.

The Ampex robot service manages the Ampex DST 800 robotic device. This device mounts, dismounts,
and manages D2 cartridges for a set of Ampex D2 drives. The Ampex robot service maintains additional
metadata about each cartridge it manages.

The STK robot service manages the STK Silo robotic device. This device mounts, dismounts, and
manages 3480 / 3490 cartridges for a set of 3480 / 3490 drives. The STK robot service maintains
additional metadata about each cartridge it manages.

The 3494 / 3495 robot service manages the two IBM tape robots. These robots manage 3480 form factor
cartridges. The cartridges may be for 3480, 3490, or 3590 type drives. The robots, while physically very
different, are managed through virtually identical interfaces.

The operator mounted device service manages a set of cartridges that are not under the control of a
robotic device. These cartridges are mounted to a set of drives by operators. The Storage System
Manager is used to inform the operators when mount operations are required.

1.6.3. Constraints

The following constraints are being imposed upon HPSS as a result of this subsystem design:

• It is expected that the PVR's clients will be able to determine when cartridges are mounted. This
should be done with polling or some asynchronous notification. The client should also be able to
accept asynchronous notifications from the PVR for those times when the PVR is able to determine
that a cartridge is mounted.

1.6.4. Libraries

Applications calling the Physical Volume Repository function calls must link with the following libraries:

libpvr.a
libmetadata.a
libhpsscs.a
libhpsscomm.a
libhpsslog.a

Chapter 1: Overview

HPSS Programmer’s Ref., Vol. 2 April 1999 1-9
Rev. 0

libhpssgss.a
libhsec.a
libhandles.a
libEncina.a
libEncClient.a
libEncSfs.a
libdce.a
libpthreads.a

1.7. System Manager

1.7.1. Purpose

The SSM System Manager is the contact point between clients, such as the SSM Data Server (which is
the graphical interface to the human operator or system administrator), and the other HPSS subsystems
Interfaces are provided to support external clients, in addition to the Data Server. The term Data Server
will be used to refer to the HPSS provided Data Server or other external clients of the System Manager.

All Data Server requests to other HPSS servers and all Data Server Encina accesses are made on the
client’s behalf by the System Manager. Operations provided by the System Manager to the Data Server
include configuration of Encina files, starting and shutting down servers, importing and exporting media,
control of devices and jobs, viewing and updating managed objects, and delogging.

All alarms, events, status messages, and notifications issued to SSM by other subsystems are received by
the System Manager and forwarded to the Data Server as appropriate, using the Data Server
client_Notify API.

The System Manager also uses the client_Notify API to notify the Data Server of changes in SSM data or
state, such as a change in the SSM Server List or a warning that the System Manager is shutting down.

1.7.2. Components

The System Manager consists of these major parts:

• Initialization

• System Manager Client Support

• Configuration

• Administrative Operations

• Managed Object Attribute Operations

• Device Management

• Job Management

• Delogging

• Storage and Media Operations

Chapter 1: Overview

1-10 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

• Accounting

• Alarm, Event, and Status Message Processing

Initialization starts up the Bitfile Server, makes connections needed to other servers, and sets up internal
tables.

Initialization

At startup, the System Manager reads the HPSS Server Configuration File and builds a copy of it in
SSM_SM_server_config. From this copy, it builds the Server List SSM_SM_servers and initializes the
Server Network Connection Table SSM_SM_server_net. The Server List includes information needed by
the System Manager and the Data Server such as the descriptive name, uuid, server type, and execution
status of each server. The Server Network Connection Table includes information needed by the System
Manager to connect to each server, including interface specifications, binding handles, and connection
handles. At this point in startup, only the interface specification is defined; binding handles are deferred.

The System Manager next reads the necessary configuration files to build the other lists it shares with its
clients. It reads the Mover Device Configuration File and the PVL Drive Configuration File and builds from
the combined information from both files the Drive List, SSM_SM_drives, which contains information
needed by the System Manager and the Data Server such as the device and drive name and the
associated PVL, PVR, and Mover for each drive.

It reads the Class of Service Configuration File, the Storage Class Configuration File, the Hierarchy
Configuration File, the Migration Policy Configuration File, and the Purge Policy Configuration File and
constructs the Class of Service List, The Storage Class List, the Hierarchy List, the Migration Policy List,
and the Purge Policy List, which are needed by the Data Server for building selection lists and for
managing the storage class window.

Next the System Manager spawns the Server List monitor thread. In most cases, the function which
changes a list will enqueue a notification to the Data Server about the change, so every single change to
the list will result in a notification to the Data Server. In the case of the Server List, which changes very
frequently, a monitor thread is created which checks the list periodically and forwards it to the Data Server
if it has changed, so several changes might be made to the list before a copy is forwarded to the Data
Server.

Next the System Manager spawns a separate thread for each server to monitor that server’s execution
and connection status.

Finally, the System Manager registers its interfaces and enters a trdce_ServerListen.

System Manager Client Support

Data Servers make contact with the System Manager with ssm_CheckIn, using the input ClientID
SSM_NEW_CLIENT to indicate an initial check-in. The System Manager returns a unique output ClientID
and then sends the new client a copy of each of the shared lists in separate notifications.

The client may check-in again with the System Manager at any time using the ClientID it was assigned at
its initial check-in. This should always be done when the client has temporarily lost and then regained
network connectivity to the System Manager, first in order to get a current copy of all the shared lists, and
second to make certain the System Manager still recognizes the client. If the System Manager crashed
and restarted, for instance, it will not know about the client and will return a failure on the subsequent
check-in; the client should then repeat its initial check-in using SSM_NEW_CLIENT as its InClientID.

Clients discontinue contact with the System Manager by calling ssm_CheckOut. If the System Manager
loses contact with a Data Server for more than SSM_SM_CLIENT_MAX_FAILTIME seconds, it will

Chapter 1: Overview

HPSS Programmer’s Ref., Vol. 2 April 1999 1-11
Rev. 0

automatically check him out.

Whenever the System Manager receives notifications of alarms, events, status messages, changes in
managed object attributes, tape mount requests or tape check-in requests, it forwards these to the
appropriate clients using the client_Notify API. Whenever one of the shared lists changes, the System
Manager informs each Data Server by calling client_Notify with an SSM_LIST_N type notification
containing the appropriate updated list.

Notifications are queued to avoid flooding the Data Server, which results in losing contact with it. There
are five notification queues:

SSM_SM_notify_q_data managed object attribute changes.
SSM_SM_notify_q_list list changes and informational notifications.
SSM_SM_notify_q_log alarms, events, status messages.
SM_SM_notify_q_tape tape mount notifications.
SSM_SM_notify_q_tape_checkin tape check-in notifications.

Since there is only one kind of informational notification and it is only used as the System Manager is
shutting down, it was combined with the list queue.

Incoming notifications are throttled in order to keep the System Manager memory usage from growing too
fast. When the queue reaches a certain limit, the notification function waits till it shrinks before adding the
new item to the queue.

Configuration

HPSS servers store permanent data about server, device, media, and policy configuration in Encina
configuration files. With the following APIs a Data Server may request the System Manager to read and
update HPSS configuration files:

ssm_ConfigAdd Adds one entry to a file.

ssm_ConfigDelete Deletes one entry from a file.

ssm_ConfigGetDefaultReturns a default configuration file entry of the type requested.
The Data Server calls ssm_ConfigGetDefault to obtain default
data as a starting point whenever the user asks to add a new
entry to a file.

ssm_ConfigRead Reads the specified entry from Encina and returns it.

ssm_ConfigUpdate Modifies one entry in a file.

SSM does not have permission to write to all configuration files.

Some subsystems require notification whenever their configuration files change in the form of an
ST_REINIT to their server managed object Administrative State. Some subsystems require that SSM not
change their configuration at all while they are executing. The configuration APIs take the appropriate
action for each server.

Administrative Operations

Administrative operations are provided to the Data Server by the ssm_Adm function and include:

Starting one or all servers

Chapter 1: Overview

1-12 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Reinitializing one or all servers
Shutting down one or all servers
Forcing a halt of one or all servers
Setting a server’s state to REPAIRED
Forcing connection to a server
Shutting down HPSS

To an extent, many of these are functions of setting the Administrative State attribute on the server
managed object. Changes to managed objects are normally handled by ssm_AttrSet. However, the
System Manager requires that changes to a server’s Administrative State be made through the ssm_Adm
function in order to make it easier to do any special processing required for the change. For example,
halting a server involves first setting his Administrative State to ST_HALT, but most servers never return
from such a request, as they shut down immediately. The System Manager must then ask the startup
demon whether the server is still running, and ask him to kill the server if he is .

The Repair function is provided to enable the human operator to inform the server that some error
condition previously reported by the server has been corrected. The subsequent action taken by the
server is up to that server, but in general the server is expected to reexamine the area of error and clear
its associated error flags accordingly.

The "Connect to server" function is provided to allow the operator to ask the System Manager to attempt
connection immediately to the specified server. The System Manager will automatically check
connections at a specified interval.

Managed Object Attribute Operations

While they are executing, HPSS servers store current and volatile data about server, device, and media
configuration in data structures called managed objects. In some cases, the same data structure is used
to define both the managed object and the corresponding Encina configuration file entry; in other cases
the attributes defined for the managed object overlap those defined for the configuration file; in still other
cases there is no corresponding managed object for a configuration file. In general, the most current
information about an entity is to be found by asking the server about its managed object rather than by
reading the configuration file.

Managed object attributes may be viewed by a Data Server with ssm_AttrGet and modified by
ssm_AttrSet. The ssm_AttrReg function allows a Data Server to register to receive notifications of
changes in specified attributes of a managed object.

In practice, a GUI Data Server uses ssm_AttrReg whenever a user opens a managed object window, so
that he can keep the window refreshed with the latest information from the server. A Data Server also
uses ssm_AttrReg to register for the OpState on servers, drives, and the generic volumes, so he can
monitor the status of the system. A GUI Data Server may use ssm_AttrGet to poll certain servers for
statistics, and ssm_AttrSet when users modify writeable fields on managed object windows.

The System Manager maintains a table of the attributes for which each Data Server is registered,
SSM_SM_registered_mo. When it receives a data change notification from a server, it searches this table
and notifies the clients who are registered to receive that notification using the client_Notify API.

The APIs with which servers notify the System Manager of managed object attribute changes are:

API: Server: Managed Object:
ssm_BitfileNotify BFS bitfile
ssm_LogFileNotify Log Daemon logfile
ssm_SFSNotify Metadata Monitor SFS

Chapter 1: Overview

HPSS Programmer’s Ref., Vol. 2 April 1999 1-13
Rev. 0

ssm_MPSNotify MPS mps
ssm_MPS_SClassNotify MPS storage class
ssm_DeviceNotify Mover device
ssm_MVRNotify Mover mover
ssm_NFS2_StatsNotify NFS Daemon nfs statistics
ssm_NSNotify Name Server name server
ssm_DriveNotify PVL drive
ssm_PVLNotify PVL pvl
ssm_QueueNotify PVL queue
ssm_RequestNotify PVL request
ssm_VolNotify PVL volume
ssm_CartNotify PVR cartridge
ssm_PVRNotify PVR pvr
ssm_ServerNotify All server
ssm_MapNotify Storage Server storage map
ssm_PVNotify Storage Server physical volume
ssm_SSNotify Storage Server storage segment
ssm_SsrvNotify Storage Server storage server
ssm_VVNotify Storage Server virtual volume

Device Management

Device Management operations include viewing device information, varying drives online and offline,
forcing drive dismounts, and relaying mount request information.

Viewing device information is accomplished by calling the ssm_AttrGet or ssm_AttrReg function for both
the Mover device managed object and the PVL drive managed object.

Varying drives online and offline is accomplished by setting the Administrative State of the PVL drive
managed object to ST_UNLOCKED or ST_LOCKED, respectively, and so is accomplished by calling
ssm_AttrSet.

The ssm_DriveDismount function enables the operator to force a dismount of a drive in the event the
PVR does not automatically perform the dismount.

The PVR sends the System Manager notifications of mount requests and mount completions so that
mount requests for human-operated PVRs can be displayed and so that mount requests for robot-
operated PVRs which get stuck can be noticed. The System Manager receives these notifications with
ssm_MountNotify, and forwards them to all Data Servers using the client_Notify API. The PVR also
sends the System Manager tape check-in notifications to display a list of cartridges for the operator to
insert into the I/O port. The System Manager receives these notifications with ssm_TapeCheckInNotify,
and forwards them to all Data Servers using the client_Notify API.

Job Management

Job management operations include displaying the job queue and canceling jobs.

Viewing the job queue is accomplished by calling ssm_AttrGet or ssm_AttrReg for the PVL queue
managed object.

Canceling jobs is performed by calling ssm_JobCancel.

Chapter 1: Overview

1-14 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Delogging

The ssm_Delog function retrieves selected records of the HPSS alarm and event log and places the
output in a UNIX file. A GUI Data Server might open a window to display the file and allow the operator to
browse it. For this to work, the UNIX file must be accessible by both the System Manager, which
executes the delog program, and by Sammi, which opens the window to view the file.

Storage and Media Operations

The storage and media operations allow the operator to view attributes of cartridges and the storage data
structures built upon them and to define cartridges to the PVL and the Storage Server.

Viewing attributes of a cartridge is a function of getting the PVR cartridge managed object attributes and is
performed by calling ssm_AttrGet or ssm_AttrReg.

Defining cartridges to the PVL is performed with ssm_CartImport, and removing the cartridges from the
PVL is performed with ssm_CartExport. Cartridges may be moved from one PVR to another with
ssm_CartMove.

Defining cartridges to the Storage Server means defining the Storage Server resource management data
structures for the cartridges, which include physical volumes, virtual volumes, and storage segment maps.
It is accomplished by calling ssm_ResourceCreate. The structure definitions are removed from the
Storage Server with the ssm_ResourceDelete function. Volumes may be repacked with
ssm_ResourceRepack and reclaimed with ssm_ResourceReclaim. Repack and reclaim are
implemented very minimally from SSM in the current release; not all the options supplied by the
command-line programs are available from SSM.

Functions not implemented in the current release include deleting inactive storage maps, listing all
cartridges, labeling cartridges, auditing the PVR, dismounting physical volumes, and dismounting
cartridges.

Accounting

The ssm_AcctRun API starts an execution of the accounting program. The ssm_AcctChange API
changes the account id on a specified bitfile.

Alarm, Event, and Status Message Processing

The logger sends selected alarms, events, and status messages to the System Manager based on the
settings in the HPSS Log Policy File. The System Manager forwards all received alarms, events, and
status messages to all Data Servers using the client_Notify API.

The API with which the logger notifies the System Manager for all three types of message is
ssm_LogMsgNotify.

1.7.3. Constraints

The following constraints are being imposed upon HPSS as a result of this subsystem design:

• Data Server Clients, those programming to the APIs provided in the ssm_client_if interface, must
run under a principal which has control permission on the System Managers’s Security Object. Other
clients, those programming only to the notification APIs, do not require control permission.

Data Server Clients are expected to provide the System Manager a client_Notify API to receive

Chapter 1: Overview

HPSS Programmer’s Ref., Vol. 2 April 1999 1-15
Rev. 0

asynchronous notifications. Clients who do not provide this api will be automatically checked out by the
System Manager.

1.7.4. Libraries

Applications calling the System Manager function calls must link with the following libraries:

libmetadata.a
libhpsscs.a
libhpsscomm.a
libhpsslog.a
libhpssgss.a
libhsec.a
libhandles.a
libEncina.a
libEncClient.a
libEncSfs.a
libdce.a
libpthreads.a

1.8. Location Server

1.8.1. Purpose

The purpose of the Location Server (LS) is to provide a service which allows various HPSS servers to
locate other HPSS servers both in the local site and at remote sites. The Location Server also provides
Class of Service (COS) selection to the HPSS Client API by maintaining local COS statistics obtained
from local Bitfile (BFS) servers.

1.8.2. Components

The Location Server consists of two major parts:

• Client cache library

• Server interface

The Client Cache Library (CCL) provides access for a client (such as the Client API) to the Location
Server’s Client Interface through a client side cache. This allows a client to access Location Server
information while reducing network traffic. An additional benefit of the CCL is that it performs automatic
retries of client requests and randomly rebinds to replicated Location Servers as needed. Functions are
included which map between Server UUIDs and Locations, locate BFSs by using COS hints, locate the
local root Name Server and locate remote Location Servers by site. The CCL functions provided are
contained in a library that is totally separate from the Location Server code.

The Server Interface provides the same functions of the CCL which allow clients to locate server
information. These are normally accessed through the CCL. In addition, there are functions which allow
remote Location Servers to exchange information as well as administrative functions allowing control of
the Location Server itself.

1.8.3. Constraints

Chapter 1: Overview

1-16 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The following constraints are being imposed upon HPSS as a result of this subsystem design:

• When metadata that is used to perform Class of Service (COS) selection is modified, such as Class
of Service, Hierarchy and Storage Class information, the Location Server must be recycled along
with the Bitfile Server in order for the changes to take effect. This allows the LS and BFS to remain
synchronized with respect to this information in order to perform COS selection properly during file
creation.

1.8.4. Libraries

Applications calling the Location Client Cache Library function calls must link with the following libraries:

libgss_nolog.a
libhandles_nolog.a
libhpsscomm_nolog.a
libhpsscs.a
libhsec_nolog.a
libhpsslog.a
libhpssls.a

1.8.5. Referenced Data Types

The majority of the key data types from each of the core HPSS servers are described in the server
chapters which follow. Some infrastructure and support data types are referenced, but not explicitly
described. Those data types whose format is not described in this document may be found in the
following HPSS header files:

Data Type File
acct_config_t acct_config.h
acct_rec_t acct_hpss.h
bfs_config_info_t bfs_config.h
bfs_lock_cb_t bfs_lock.h
bf_schdl_info_t bfs_cache.h
bf_tape_segment_cached_t bfs_cache.h
cos_t hpss_cos.h
hpsssem_t hpsssem.h
hpssoid_t hpssoid.h
hpss_connect_handle_t hpssIF.h
hpss_fileattr_t Refer to HPSS Programmer’s Reference Guide, Volume 1.
hpss_migr_policy_md_t hpss_migr_policy.h
hpss_object_handle_t hpssIF.h
hpss_purge_policy_md_t hpss_purge_policy.h
hpss_sclass_md_t hpss_sclass.h
hpss_server_attrib_t hpss_server_attr.h
hpss_server_config_t mm_idl_types.h
IOD_t Refer to HPSS Programmer’s Reference Guide, Volume 1.
IOR_t Refer to HPSS Programmer’s Reference Guide, Volume 1.
log_rec_hdr_t cs_Log.h
LogFileAttr_t cs_LogFileAttr.h

Chapter 1: Overview

HPSS Programmer’s Ref., Vol. 2 April 1999 1-17
Rev. 0

LogcConfig_t cs_LogcConfig.h
LogdConfig_t cs_LogdConfig.h
LogPolicy_t cs_LogPolicy.h
mm_mon_config_t mm_idl_types.h
mountd_config_t nfs2/mnt1_config.h
mps_attrib_t mps_attrib_t.h
mps_config_t mps_config.h
mps_sclass_attrs_array_t mps_interface_def.h
mps_sclass_attrs_t mps_interface_def.h
nfs2_stats_t nfs2/nfs2_IFdefs.h
rpc_master_handle_t hpss_rpc_handles.h
security_t security.h
sfs_attrs_t mm_ssm_data.h
timestamp_sec_t hpss_idl_types.h
trpc_master_handle_t hpss_trpc_handles.h

Chapter 1: Overview

1-18 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-1
Rev. 0

2. Name Server Functions

This chapter specifies the Name Server programming interface. Specifically, the following information is
provided:

Application Programming Interfaces (APIs)

Data Definitions

2.1. API Functions

This section describes all APIs which are provided for use by another HPSS subsystem or by a client
external to HPSS. The API interface specification includes the following information:

Name

Syntax

Description

Parameters

Return Values

Error Conditions

Related Information

Clients

Notes

Chapter 2: Name Server Functions

2-2 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

2.1.1. ns_Delete

Purpose
Delete a name space object.

Syntax
#include "cns_interface.h"

signed32
ns_Delete (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
ns_ObjHandle_t *Directory, /* IN */
uchar *PathName, /* IN */
unsigned32 DontBackUp, /* IN */
unsigned32 Options, /* IN */
hpssoid_t *BitFileId, /* OUT */
ns_ObjHandle_t *FilesetHandle, /* OUT */
unsigned32 *LinkCount, /* OUT */
ns_RemainingPath_t *RemainingPath); /* OUT */

Description
This procedure deletes the object identified by PathName from the specified directory. The path
name can identify a directory, a file, a hard link, or a junction. If no PathName is supplied, the
object identified by Directory will be deleted. To delete a symbolic link, first fetch the object
handle to the symbolic link and then submit the ns_Delete request with this object handle as the
the Directory and PathName set to NULL.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

Directory Pointer to the directory containing the object to be deleted.

PathName Pointer to the path name of the object that is to be deleted.

DontBackUp This parameter contains a boolean value. If the value is 1 and
any “..” components in the PathName would result in backing up
past the starting directory, the name server will stop processing
the request and return an error. If the value is 0 then the name
server will allow “..” path components to back up past the
starting directory. If an error is returned, the RemainingPath will
contain the remainder of the PathName.

Options Used to control the behavior of the delete. See the Notes below
for the Option values.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-3
Rev. 0

BitFileId Pointer to a BitfileId. If the object being deleted is a file, the
BitFileId to the file is returned. If the object is not a file this
parameter will contain zeros. The BitFileid of a deleted file is
returned so that the Client API can optimize its delete algorithm.

FilesetHandle If the object being deleted is a junction, the object handle of the
directory that the junction is pointing to is returned. If the object
being deleted is not a junction, this parameter will contain zeros.

LinkCount Pointer to a count of the number of objects still linked to the bitfile
after the delete has occurred.

RemainingPath Pointer to the structure containing returned information that is
necessary to resolve the remainder of PathName.

Return values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_Delete procedure is unsuccessful and the Name Server data base remains unchanged if
any of the following are true:

HPSS_EACCES Search permission is denied on a component of the directory
path or write permission is denied on the directory from which the
object is to be deleted.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The Name Server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EBACKOVER A PathName containing “..” components would have backed
over the PathName origin and the DontBackUp option was set to
‘true’.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EINVAL The path name identifies a "." or ".." directory.

HPSS_EIO An internal error occurred while reading from or writing to the
Name Server data base.

HPSS_EISDIR A attempt was made to delete a directory, but Options has the
DONT_DELETE_DIR bit turned on.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EMOREPATH The name server could not fully resolve the input PathName.
Information to help resolve the PathName can be found in
RemainingPath.

Chapter 2: Name Server Functions

2-4 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_ENAMETOOLONG The length of the path name exceeds
HPSS_MAX_HPSS_MAX_PATH_NAME or the length of a
component in the path name exceeds HPSS_MAX_FILE_NAME.

HPSS_ENOENT A component of the path name does not exist or the path name
argument points to an empty string.

HPSS_ENOTDIR The object handle is not to a valid directory.

HPSS_ENOTEMPTY The specified directory has entries (in addition to"." and "..").

HPSS_ENOTREADY The Name Server has not completed its initialization.

HPSS_ESTALE The generation number in the Directory is incorrect.

See also
ns_Insert, ns_MkDir, ns_MkLink, ns_MkSymLink, ns_MkJunction, and ns_MkSymLink.

Clients
Client APIs, insif.

Notes
The behavior of the delete is controlled by the Options. Options can one of the following values:

NS_DELETE_ANYTHING Whatever type of object the PathName resolves to will be
deleted.

NS_ONLY_DELETE_DIR If the PathName resolves to an object type other than a directory,
an error will be returned.

NS_DONT_DELETE_DIR If the PathName does resolve to an object of type directory, an
error will be returned.

To delete a Symbolic Link object, provide an object handle.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-5
Rev. 0

2.1.2. ns_DeleteACL

Purpose
Delete a list of entries from the ACL of the specified Name Server object.

Syntax
#include "cns_interface.h"

signed32
ns_DeleteACL(

trpc_handle_t BindH, /* IN */
hpss_object_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
ns_ObjHandle_t *Directory, /* IN */
uchar *PathName, /* IN */
unsigned32 DontBackUp, /* IN */
ns_ACLConfArray_t *ACLEntries, /* IN */
ns_RemainingPath_t *RemainingPath); /* OUT */

Description
Delete the specified entries from the ACL associated with the object specified by PathName and
Directory. If no PathName is supplied, the object identified by Directory will be used.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

Directory Pointer to the directory containing the object whose ACL entries
are to be deleted.

PathName Pointer to the path name of the object whose ACL entries are to
be deleted.

DontBackUp This parameter contains a boolean value. If the value is 1 and
any “..” components in the PathName would result in backing up
past the starting directory, the name server will stop processing
the request and return an error. If the value is 0 then the name
server will allow “..” path components to back up past the
starting directory. If an error is returned, the RemainingPath will
contain the remainder of the PathName.

ACLEntries Pointer to the array of ACL entries that are to be deleted.

RemainingPathP Pointer to the structure containing returned information that is
necessary to resolve the remainder of PathName.

Return values

Chapter 2: Name Server Functions

2-6 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_DeleteACL procedure is unsuccessful and the Name Server data base remains
unchanged if any of the following are true:

HPSS_EACCES Search permission is denied on a component of the directory
path, or the owner does not have write permission, or others do
not have control permission.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBACKOVER A PathName containing “..” components would have backed
over the PathName origin and the DontBackUp option was set to
‘true’.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The Name Server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EIO An internal error occurred while reading from or writing to the
Name Server data base.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EMOREPATH The name server could not fully resolve the input PathName.
Information to help resolve the PathName can be found in
RemainingPath.

HPSS_ENAMETOOLONG The length of the path name exceeds HPSS_MAX_PATH_NAME
or the length of a component in the path name exceeds
HPSS_MAX_FILE_NAME.

HPSS_ENOENT A component of the path name does not exist.

HPSS_ENOTDIR The object handle is not to a valid directory.

HPSS_ENOTREADY The Name Server has not completed its initialization.

HPSS_ESRCH The corresponding ACLEntry was not found.

HPSS_ESTALE The generation number in the Directory is incorrect.

See also
ns_GetACL, ns_SetACL, ns_UpdateACL.

Clients
Client APIs, insif.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-7
Rev. 0

Notes
None.

Chapter 2: Name Server Functions

2-8 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

2.1.3. ns_DeleteFileset

Purpose
Delete a fileset object.

Syntax
#include <cns_interface.h>

signed32
ns_DeleteFileset (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCreds, /* IN */
unsigned32 RequestId, /* IN */
ns_ObjHandle_t *FilesetHandle, /* IN */
u_signed64 *FilesetId); /* IN */

Description
This transactional procedure deletes the fileset identified by either the FilesetHandle or the
FilesetId.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the hpss_ConnectHandle that defines the connection
context for this user.

UserCreds Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestId The request identifier specified by the client.

FilesetHandle Pointer to a name server handle which describes the fileset to be
deleted. If the FilesetHandle is NULL the FilesetId will be used to
identify the object to be deleted. See the Notes below for more
information.

FilesetId Pointer to a fileset identifier which identifies the fileset to be
deleted. If the FilesetId is NULL, the FilesetHandle will be used.
See the Notes below for more information.

Return Values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error Conditions.

Error Conditions
The ns_DeleteFileset procedure is unsuccessful and the name server data base remains
unchanged if any of the following are true:

HPSS_EACCES Write permission is denied. Only the Root user has permission
to delete filesets.

HPSS_EAGAIN Resources are temporarily unavailable.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-9
Rev. 0

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The name server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EIO An internal error occurred while reading from or writing to the
name server data base.

HPSS_ENOTEMPTY The specified fileset has entries (in addition to”.” and “..”).

HPSS_ENOTREADY The name server has not completed its initialization.

HPSS_ESTALE The generation number in the Directory is incorrect.

See also
 ns_MkFileset .

Clients
Client APIs, insif

Notes
If both the FilesetHandle and FilesetId are non-NULL the Name Server will insure that they both
point to the same object. If they do not, an error will be returned. If both are NULL an error will be
returned.

When the object handle is supplied additional overhead is incurred by having to read the object
metadata file in addition to the fileset metadata file.

If the fileset is not empty the fileset will not be deleted and an error will be returned.

Chapter 2: Name Server Functions

2-10 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

2.1.4. ns_GetACL

Purpose
Get the ACL for the specified Name Server object.

Syntax
#include "cns_interface.h"
signed32
ns_GetACL (

trpc_handle_t BindH, /* IN */
hpss_object_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
ns_ObjHandle_t *Directory, /* IN */
uchar *PathName, /* IN */
unsigned32 DontBackUp, /* IN */
ns_ACLConfArray_t **ACLEntries, /* OUT */
ns_RemainingPath_t *RemainingPath); /* OUT */

Description
Get and return the ACL for the object identified by PathName located in the specified directory. If
no PathName is supplied, the object identified by Directory is used.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

Directory Pointer to the directory containing the object whose ACL is to be
obtained.

PathName Pointer to the path name of the object whose ACL is to be
obtained.

DontBackUp This parameter contains a boolean value. If the value is 1 and
any “..” components in the PathName would result in backing up
past the starting directory, the name server will stop processing
the request and return an error. If the value is 0 then the name
server will allow “..” path components to back up past the
starting directory. If an error is returned, the RemainingPath will
contain the remainder of the PathName.

ACLEntries Pointer to the array of ACL entries.

RemainingPathP Pointer to the structure containing returned information that is necessary
to resolve the remainder of PathName.Return values

Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-11
Rev. 0

Error conditions
The ns_GetACL procedure is unsuccessful and the Name Server data base remains unchanged
if any of the following are true:

HPSS_EACCES Search permission is denied on a component of the directory
path.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBACKOVER A PathName containing “..” components would have backed
over the PathName origin and the DontBackUp option was set to
‘true’.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The Name Server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EIO An internal error occurred while reading from or writing to the
Name Server data base.

HPSS_ENAMETOOLONG The length of the path name exceeds HPSS_MAX_PATH_NAME
or the length of a component in the path name exceeds
HPSS_MAX_FILE_NAME.

HPSS_ENOENT A component of the path name does not exist.

HPSS_ENOTDIR The object handle is not to a valid directory.

HPSS_ENOTREADY he Name Server has not completed its initialization.

HPSS_ESTALE The generation number in the Directory is incorrect.

See also
ns_DeleteACL, ns_SetACL, ns_UpdateACL.

Clients
Client APIs, insif

Notes
None.

Chapter 2: Name Server Functions

2-12 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

2.1.5. ns_GetAttrs

Purpose
Get and return the Name Server handle, access ticket, and metadata (attributes) associated with
the specified object.

Syntax
#include "cns_interface.h"
#include <hpssoid.h>

signed32
ns_GetAttrs (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
ns_ObjHandle_t *Directory, /* IN */
uchar *PathName, /* IN */
unsigned32 DontBackUp, /* IN */
unsigned32 ChaseSymLink, /* IN */
ns_AttrBits_t ObjAttrBits, /* IN */
ns_AttrBits_t ParentAttrBits, /* IN */
ns_ObjHandle_t *ObjHandle, /* OUT */
gss_token_t *AcsTicket, /* OUT */
ns_Attrs_t *ObjAttrs, /* OUT */
ns_Attrs_t *ParentAttrs, /* OUT */
uchar *ObjName, /* OUT */
ns_RemainingPath_t *RemainingPath); /* OUT */

Description
This non-transactional procedure is used to get and return the object handle, access ticket, name,
and the attributes specified by ObjAttrBits for the object in the directory identified by Directory and
PathName. If the ParentAttrBits are non-zero attributes for the parent directory are returned in
ParentAttrs. ns_GetAttrs performs the POSIX stat() function for objects. If no PathName is
specified attributes are returned for the object identified by Directory.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

Directory Pointer to the directory containing the object whose attributes are
to be obtained.

PathName Pointer to the path name of the object whose attributes are to be
obtained.

DontBackUp This parameter contains a boolean value. If the value is 1 and
any “..” components in the PathName would result in backing up

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-13
Rev. 0

past the starting directory, the name server will stop processing
the request and return an error. If the value is 0 then the name
server will allow “..” path components to back up past the
starting directory. If an error is returned, the RemainingPath will
contain the remainder of the PathName.

ChaseSymLink If the value of ChaseLink is 1, and the last path component is a
symbolic link, then the symbolic link will be interpreted until the
final object is reached and the attributes of that object will be
returned. If the value is 0, the attributes of the symbolic link itself
will be returned.

ObjAttrBits A bit vector in which the appropriate bit is set (on) for each
attribute value that is to be returned in the attribute structure,
ObjAttrs, below.

ParentAttrBits A bit vector in which the appropriate bit is set (on) for each
attribute value that is to be returned in the attribute structure,
ParentAttrs, below.

ObjHandle Pointer to the handle that identifies this object within the Name
Server database.

AcsTicket Pointer to a ticket that contains the access rights (determined
from the ACLs) to the bitfile for the user identified in UserCred. If
this pointer is null on input, a ticket will not be returned. The
return argument will be null if a connection to the BFS cannot be
established or the PathName refers to an object other that a file.

ObjAttrs Pointer to a structure containing metadata information about the
object.

ParentAttrs Pointer to a structure containing metadata information about the
parent of the object.

ObjName Pointer to a string which contains the object name.

RemainingPath Pointer to the structure containing the information necessary to
resolve the remainder of PathName.

Return values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_GetAttrs routine is unsuccessful and the Name Server data base remains unchanged if
any of the following are true:

HPSS_EACCES Search permission is denied on a component of the directory
path.

HPSS_EAGAIN Resources are temporarily unavailable.

Chapter 2: Name Server Functions

2-14 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_EBACKOVER A PathName containing “..” components would have backed
over the PathName origin and the DontBackUp option was set to
‘true’.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The Name Server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EBADF The bitfile identifier is not to a valid file.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EIO An internal error occurred while reading from or writing to the
Name Server data base.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EMOREPATH The name server could not fully resolve the input PathName.
Information to help resolve the PathName can be found in
RemainingPath.

HPSS_ENAMETOOLONG The length of the path name exceeds HPSS_MAX_PATH_NAME
or the length of a component in the path name exceeds
HPSS_MAX_FILE_NAME.

HPSS_ENOENT A component of the path name does not exist.

HPSS_ENOTDIR The object handle is not to a valid directory.

HPSS_ENOTREADY The Name Server has not completed its initialization.

HPSS_ESTALE The generation number in the Directory is incorrect.

See also
ns_SetAttr, ns_ReadDir and ns_ReadLink.

Clients
Client API, insif

Notes
ns_GetAttrs is used for three purposes: to obtain the Name Server handle for the object, to
obtain an access ticket, and to obtain attributes about the object. When used to obtain an object
handle or an access ticket, the bit vectors should be 0.

When the path name resolves to a directory, junction, fileset, or symbolic link, the authorization
ticket that is returned will be NULL. The bitfile server's BitfileId is returned through the ObjAttrs
structure. In addition other attributes about the bitfile, such as its size and time last accessed, are
also returned. Although attributes about the bitfile are returned, these attributes cannot be set
using ns_SetAttrs. Bitfile attributes must be set using bfs_SetAttrs.

The reason the Name Server returns bitfile attributes is to improve the performance of the ftp ls
command when the -l option is used.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-15
Rev. 0

2.1.6. ns_GetFilesetAttrs

Purpose
Get and return the metadata (attributes) associated with the specified fileset.

Syntax
#include <cns_interface.h>
signed32

ns_GetFilesetAttrs (
trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCreds, /* IN */
unsigned32 RequestId, /* IN */
ns_ObjHandle_t *FilesetHandle, /* IN */
u_signed64 *FilesetId, /* IN */
ns_FilesetAttrBits_t AttrBits, /* IN */
ns_FilesetAttrs_t *Attrs); /* OUT */

Description
This non-transactional procedure is used to get and return the name server fileset attributes
specified by AttrBits for the fileset specified by FilesetHandle or FilesetId.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the hpss_ConnectHandle that defines the connection
context for this user.

UserCreds Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestId The request identifier specified by the client.

FilesetHandle Pointer to an object handle which uniquely identifies the fileset
whose attributes are to be returned. If the FilesetHandle is NULL
the FilesetId will be used. See the Notes below for more details.

FilesetId Pointer to a unique fileset identifier which specifies the fileset
whose attributes are to be returned. If the FilesetId is NULL the
FilesetHandle will be used. See the Notes below for more
details.

AttrBits A bit vector in which the appropriate bit is set (on) for each
attribute value that is to be returned in the fileset attribute
structure, Attrs, below.

Attrs Pointer to a structure which is to contain the returned fileset data.

Return Values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error Conditions.

Error Conditions

Chapter 2: Name Server Functions

2-16 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The ns_GetFilesetAttrs routine is unsuccessful and the name server data base remains
unchanged if any of the following are true:

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The name server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EINVAL Neither a FilesetHandleP or a FilesetId were supplied, or the
FilesetHandleP and FilesetId do not point to the same fileset.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EIO An internal error occurred while reading from or writing to the
name server data base.

HPSS_ENOTREADY The name server has not completed its initialization.

See also
 ns_MkFileset, ns_SetFileAttrs.

Clients
Client APIs, insif

Notes
If both the FilesetHandle and FilesetId are non-NULL the Name Server will insure that they both
point to the same object. If they do not, an error will be returned. If both are NULL an error will be
returned.

If a FilesetHandle is supplied performance will be slower because the Name Server will have to
access the indicated object block.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-17
Rev. 0

2.1.7. ns_GetFilesetByNameOrId

Purpose
To return Global fileset record fields.

Syntax
#include <cns_interface.h>

signed32
ns_GetFilesetByNameOrId (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCreds, /* IN */
unsigned32 RequestId, /* IN */
unsigned32 Options, /* IN */
uchar *FilesetName, /* IN/OUT */
u_signed64 *FilesetId, /* IN/OUT */
uuid_t *NameServerUUID, /* OUT */
uuid_t *GatewayUUID); /* OUT */

Description
This non-transactional procedure gets a Global fileset record and returns the fields of this record
as parameters. Option controls the behavior of the function. See the Notes section for a
description of the Option values. Note that the returned GatewayUUID (if any) is the UUID of the
Gateway that manages the fileset. If there is no Gateway managing the fileset, the UUID returned
for the Gateway will be NULL.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the hpss_ConnectHandle that defines the connection
context for this user.

UserCreds Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestId The request identifier specified by the client.

Options Options controls the behavior of of the function. See the Notes
section below.

FilesetName If the Options parameter indicates that we are to “get by name”,
this parameters points to a Fileset name.

FilesetId If the Options parameter indicates that we are to “get by
FilesetId”, this parameter contains the FilesetId.

NameServerUUID The UUID of the Name Server that manages this Fileset.

GatewayUUID The UUID of the Gateway that manages this fileset. Note that
this value will be zero for all HPSS only filesets.

Return Values

Chapter 2: Name Server Functions

2-18 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error Conditions.

Error Conditions
The ns_GetFilesetByNameOrId routine is unsuccessful and the name server data base remains
unchanged if any of the following are true:

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The name server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EINVAL The Options parameter contained an illegal value.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EIO An internal error occurred while reading from or writing to the
name server data base.

HPSS_ENOTREADY The name server has not completed its initialization.

See also
ns_MkFileset.

Clients
Client APIs, insif

Notes
The Options parameter controls the behavior of the routine. The permissible values for Options
are:

NS_GET_BY_NAME the function assums that the client is supplying a FilesetName
and the funtion will return the FilesetId, NameServerUUID, and
the GatewayUUID.

NS_GET_BY_FILESET_ID the function assumnes the client is passing a FilesetId and the
function returns the FilesetName, NameServerUUID and the
GatewayUUID (if any).

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-19
Rev. 0

2.1.8. ns_GetName

Purpose
Get a path name for the specified bitfile.

Syntax
#include <hpssoid.h>
#include "cns_interface.h"

signed32
ns_GetName (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
hpssoid_t *BitfileId, /* IN */
ns_ObjHandle_t *ObjHandle, /* IN */
ns_ObjHandle_t FilesetHandle, /* OUT */
uchar *PathName, /* OUT */
gss_token_t *AcsTicket); /* OUT */

Description
This procedure gets one (of possibly many) path names for the bitfile identified by the specified
BitfileId. In addition, it can be used to get the path name for the Name Server object identified by
ObjHandle. It is an error to supply both a BitFileId and an ObjHandle.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

BitfileId Pointer to the storage object ID for the bitfile whose path name is
to be returned.

ObjHandle Pointer to the Name Server object whose path name is to be
returned.

FilesetHandle Pointer to a Name Server object handle which identifies the root
node of the fileset containing the PathName. The returned
PathName is always relative to this object handle.

PathName Pointer to a path name for the bitfile or Name Server object.

AcsTicket Pointer to a ticket that contains the access rights (determined
from the ACLs) to the bitfile for the user identified in UserCred. If
this pointer is null on input, a ticket will not be returned. The
return argument will be null if a connection to the BFS cannot be
established or the path name refers to a directory or symbolic
link.

Chapter 2: Name Server Functions

2-20 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Return values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_GetName procedure is unsuccessful and the Name Server data base remains
unchanged if any of the following are true:

HPSS_EACCES Search permission is denied on a component of the directory
path.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The Name Server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EINVAL The path name identifies a "." or ".." directory.

HPSS_EIO An internal error occurred while writing to the Name Server data
base.

HPSS_ENAMETOOLONG The length of the path name exceeds HPSS_MAX_PATH_NAME
or the length of a component in the path name exceeds
HPSS_MAX_FILE_NAME.

HPSS_ENOTREADY The Name Server has not completed its initialization.

HPSS_ESTALE The generation number in the Directory is incorrect.

See also
ns_Insert, ns_MkDir, ns_Mk_Link, ns_MkSymLink.

Clients
Storage System Manager, insif

Notes
The returned PathName will always begin with “./” and be relative to FilesetHandle

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-21
Rev. 0

2.1.9. ns_Insert

Purpose
Insert a bitfile object into a directory.

Syntax
#include <hpssoid.h>
#include "cns_interface.h"

signed32
ns_Insert (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
ns_ObjHandle_t *Directory, /* IN */
uchar *PathName, /* IN */
unsigned32 DontBackUp, /* IN */
u_signed65 *FilesetId, /* IN */
ns_AttrBits_t InAttrBits, /* IN */
ns_Attrs_t *InAttrs, /* IN */
gss_token_t *InAcsTicket, /* IN */
unsigned32 ReturnAttrsFlag, /* IN */
ns_AttrBits_t BitsForOutAttrs, /* IN */
ns_Attrs_t *OutAttrs, /* OUT */
ns_ObjHandle_t *ObjHandle, /* OUT */
gss_token_t *OutAcsTicket , /* OUT */
ns_RemainingPath_t *RemainingPath); /* OUT */

Description
This procedure inserts a bitfile object which will be named by PathName into the specified
directory. If return attributes are requested, the attributes specified in BitsForOutAttrs are returned
in OutAttrs. If no PathName is supplied, an error is returned.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

Directory Pointer to the directory in which the bitfile is to be inserted.

PathName The name of the bitfile that is to be inserted.

DontBackUp This parameter contains a boolean value. If the value is 1 and
any “..” components in the PathName would result in backing up
past the starting directory, the name server will stop processing
the request and return an error. If the value is 0 then the name
server will allow “..” path components to back up past the

Chapter 2: Name Server Functions

2-22 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

starting directory. If an error is returned, the RemainingPath will
contain the remainder of the PathName.

FilesetId Pointer to the FilesetId of the fileset that the file is being inserted
into. The purpose of this parameter is to insure the the new file
is inserted into the correct fileset. The name server compares
this FilesetId against the FilesetId of the file’s parent directory.

InAttrBits A bit vector in which the appropriate bit is set (on) for each
attribute value that is provided in the attribute structure, InAttrs,
below.

InAttrs Pointer to the structure containing some values for the metadata
that will be maintained by the Name Server for the specified
bitfile.

InAcsTicket Pointer to an access ticket containing the encrypted bitfile ID.
This bitfile ID must match the bitfile ID specified in InAttrs.

ReturnAtttrsFlag Indicates if attributes are to be returned for the newly inserted
bitfile. When the value of the flag is 1, the attributes specified by
BitsForOutAttrs will be returned. If the value of the flag is 0, no
attributes will be returned.

BitsForOutAttrs A bit vector in which the appropriate bit is set (on) for each
attribute value that is to be returned in OutAttrs.

OutAttrs Pointer to a structure containing the attributes specified by
BitsForOutAttrs for the newly inserted object.

ObjHandle The Name Server handle that identifies the newly inserted bitfile.

OutAcsTicket Pointer to a ticket that contains the access rights (determined
from the ACLs) to the bitfile for the user identified in UserCred. If
this pointer is null on input, a ticket will not be returned. The
return argument will be null if a connection to the BFS cannot be
established or the PathName refers to an object other than a file.

RemainingPath Pointer to the structure containing returned information that is
necessary to resolve the remainder of PathName.

Return values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_Insert procedure is unsuccessful and the Name Server data base remains unchanged if
any of the following are true:

HPSS_EACCES Search permission is denied on a component of the directory
path or write permission is denied on the directory in which the
bitfile is to be inserted.

HPSS_EAGAIN Resources are temporarily unavailable.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-23
Rev. 0

HPSS_EBACKOVER A PathName containing “..” components would have backed
over the PathName origin and the DontBackUp option was set to
‘true’.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The Name Server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EBADF The bitfile identifier is not to a valid file.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EEXIST An object with the same path name already exists in the
directory.

HPSS_EFAULT An internal error occurred.

HPSS_EINCONSISTENT The supplied FilesetId does not match the fileset being inserted
into.

HPSS_EINVAL The path name was ".", ".." or NULL or a value in the attribute
structure is invalid.

HPSS_EIO An internal error occurred while writing to the Name Server data
base.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EMOREPATH The name server could not fully resolve the input PathName.
Information to help resolve the PathName can be found in
RemainingPath.

HPSS_ENAMETOOLONG The length of the path name exceeds HPSS_MAX_PATH_NAME
or the length of a component of path name exceeds
HPSS_MAX_FILE_NAME.

HPSS_ENOENT A component of the path name does not exist.

HPSS_ENOTDIR The object handle is not to a valid directory.

HPSS_ENOTREADY The Name Server has not completed its initialization.

HPSS_ESTALE The generation number in the Directory is incorrect.

See also
ns_Delete, ns_MkDir, ns_Mk_Link, ns_MkSymLink.

Clients
Client APIs, insif.

Notes

Chapter 2: Name Server Functions

2-24 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

If both the UID and the GID have been supplied in the InAttrs structure these values will be
assigned to the file. However if one or the other has been supplied, but not both, an error is
returned. If neither the UID or GID have been supplied in the InAttrs structure, the UID is taken
from the credentials, and the GID is taken from the parent directory. All other attribute values
required to create the file will be obtained from InAttrs.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-25
Rev. 0

2.1.10. ns_MkDir

Purpose
Create a directory.

Syntax
#include "cns_interface.h"

signed32
ns_MkDir (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
ns_ObjHandle_t *Directory, /* IN */
uchar *PathName, /* IN */
unsigned32 DontBackUp, /* IN */
u_signed64 *FilesetId, /* IN */
ns_AttrBits_t InAttrBits, /* IN */
ns_Attrs_t *InAttrs, /* IN */
unsigned32 ReturnAttrsFlag, /* IN */
ns_AttrBits_t BitsForOutAttrs, /* IN */
ns_Attrs_t *OutAttrs, /* OUT */
ns_ObjHandle_t *ObjHandle, /* OUT */
ns_RemainingPath_t *RemainingPath); /* OUT */

Description
This procedure is used to make a new directory identified by PathName in the specified directory
with the attributes specified by InAttrBits with values found in InAttrs. If return attributes are
requested, the attributes specified in BitsForOutAttrs are returned in OutAttrs.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

Directory Pointer to the directory in which the new directory is to be
created.

PathName Pointer to the path name of the new directory.

DontBackUp This parameter contains a boolean value. If the value is 1 and
any “..” components in the PathName would result in backing up
past the starting directory, the name server will stop processing
the request and return an error. If the value is 0 then the name
server will allow “..” path components to back up past the
starting directory. If an error is returned, the RemainingPath will
contain the remainder of the PathName.

Chapter 2: Name Server Functions

2-26 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

FilesetId Pointer to the FilesetId of the fileset that the directory is being
inserted into. The purpose of this parameter is to insure the the
new directory is inserted into the correct fileset. The name
server compares this FilesetId against the FilesetId of the
directory’s parent directory.

InAttrBits A bit vector in which the appropriate bit is set (on) for each
attribute value that is to be obtained from the attribute structure,
InAttrs, below.

InAttrs Pointer to the structure containing some values for the metadata
that will be maintained for the new directory.

ReturnAtttrsFlag Indicates if attributes are to be returned for the newly created
directory. When the value of the flag is 1, the attributes specified
by BitsForOutAttrs will be returned. If the value of the flag is 0,
no attributes will be returned.

BitsForOutAttrs A bit vector in which the appropriate bit is set (on) for each
attribute value that is to be returned in OutAttrs.

OutAttrs Pointer to a structure containing the attributes specified by
BitsForOutAttrs for the newly created directory.

ObjHandle The Name Server handle that identifies the newly created
directory.

RemainingPath Pointer to the structure containing returned information that is
necessary to resolve the remainder of PathName.

Return values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_MkDir procedure is unsuccessful and the Name Server data base remains unchanged if
any of the following are true:

HPSS_EACCES Search permission is denied on a component of the directory
path or write permission is denied on the directory in which the
new directory is to be made.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBACKOVER A PathName containing “..” components would have backed
over the PathName origin and the DontBackUp option was set to
‘true’.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The Name Server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-27
Rev. 0

HPSS_EEXIST An object with the same path name already exists in the
directory.

HPSS_EINCONSISTENT The supplied FilesetId does not match the fileset being inserted
into.

HPSS_EINVAL The path name was ".", ".." or NULL, or the value of a specified
InAttrs is invalid.

HPSS_EIO An internal error occurred while writing to the Name Server data
base.

HPSS_EMDATA An inconsistency was encountered in the name server’s
metadata.

HPSS_EMOREPATH The name server could not fully resolve the input PathName.
Information to help resolve the PathName can be found in
RemainingPath.

HPSS_ENAMETOOLONG The length of the path name exceeds HPSS_MAX_PATH_NAME
or the length of a component of the path name exceeds
HPSS_MAX_FILE_NAME.

HPSS_ENOENT A component of the path name does not exist.

HPSS_ENOTDIR The object handle is not to a valid directory.

HPSS_ENOTREADY The Name Server has not completed its initialization.

HPSS_ESTALE The generation number in the Directory is incorrect.

See also
ns_Delete, ns_Insert, ns_MkLink, ns_MkSymLink.

Clients
Client APIs, insif.

Notes
If both the UID and the GID have been supplied in the InAttrs structure these values will be
assigned to the directory. However if one or the other has been supplied, but not both, an error is
returned. If neither the UID or GID have been supplied in the InAttrs structure, the UID is taken
from the credentials, and the GID is taken from the parent directory. All other attribute values
required to create the directory will be obtained from InAttrs.

Chapter 2: Name Server Functions

2-28 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

2.1.11. ns_MkFileset

Purpose
Create a fileset.

Syntax
#include <cns_interface.h>

signed32
ns_MkFileset (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCreds, /* IN */
unsigned32 RequestId, /* IN */
ns_FilesetAttrBits_t InFSAttrBits, /* IN */
ns_FilesetAttrs_t *InFSAttrs, /* IN */
ns_AttrBits_t InObjAttrBits, /* IN */
ns_Attrs_t *InObjAttrs, /* IN */
ns_FilesetAttrBits_t BitsForFSAttrs, /* IN */
ns_AttrBits_t BitsForObjAttrs, /* IN */
ns_FilesetAttrs_t *OutFSAttrs, /* OUT */
ns_Attrs_t *OutObjAttrs, /* OUT */
ns_ObjHandle_t *FilesetHandle); /* OUT */

Description
This procedure is used to create the root of a new fileset with the attributes specified by
InFSAttrBits and InObjAttrBits using the values found in InFSAttrs and InObjAttrs.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the hpss_ConnectHandle that defines the connection
context for this user.

UserCreds Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestId The request identifier specified by the client.

InFSAttrBits A bit vector in which the appropriate bit is set (on) for each
attribute value that is to be obtained from InFSAttrs.

InFSAttrs Pointer to the structure containing the values, if any, that are to
be placed in the newly created fileset record.

InObjAttrBits A bit vector in which the appropriate bit is set (on) for each
attribute value that is to be obtained from InObjAttrs.

InObjAttrs Pointer to the structure containing the values, if any, that are to
be placed in the newly created fileset object block.

BitsForFSAttrs A bit vector in which the appropriate bit is set (on) for each
attribute value that is to be returned in OutFSAttrs.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-29
Rev. 0

BitsForObjAttrs A bit vector in which the appropriate bit is set (on) for each
attribute value that is to be returned in OutObjAttrs.

OutFSAttrs Pointer to a structure containing the attributes specified by
BitsForFSAttrs for the newly created fileset.

OutObjAttrs Pointer to a structure containing the attributes specified by
BitsForObjAttrs for the newly created fileset object.

 FilesetHandle Pointer to Name Server object handle structure which will contain
the object handle to the newly created fileset root object.

Return Values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error Conditions.

Error Conditions
The ns_MkFileset procedure is unsuccessful and the name server data base remains unchanged
if any of the following are true:

HPSS_EACCES The requestor does not have permission to make a fileset. Only
the Root user is allowed to make filesets.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The name server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EEXISTS The FilesetId was already being used.

HPSS_EINVAL An input parameter was invalid. Check the log file for more
details.

HPSS_EIO An internal error occurred while writing to the name server data
base.

HPSS_ENOTREADY The name server has not completed its initialization.

See also
ns_DeleteFileset

Clients
Client APIs, insif

Notes

Chapter 2: Name Server Functions

2-30 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The root node of a fileset is created. This object will not be a part of any existing Name Server
directory heirarchy. It will be a stand-alone directory which is separate from the Name Server’s
root.

If both the UID and the GID have been supplied in the InObjAttrs structure these values will be
assigned to the fileset root. However if one or the other has been supplied, but not both, an error
is returned. If neither the UID or GID have been supplied in the InObjAttrs structure, the UID is
taken from the credentials, and the GID is taken from the parent directory. All other object
attribute values required to create the fileset root will be obtained from InObjAttrs.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-31
Rev. 0

2.1.12. ns_MkJunction

Purpose
Create a junction point.

Syntax
#include <cns_interface.h>

signed32
ns_MkJunction (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCreds, /* IN */
unsigned32 RequestId, /* IN */
ns_ObjHandle_t *Directory, /* IN */
uchar *PathName, /* IN */
unsigned32 DontBackUp, /* IN */
u_signed64 *FilesetId, /* IN */
ns_ObjHandle_t *FilesetHandle, /* IN */
ns_AttrBits_t AttrBits, /* IN */
ns_Attrs_t *Attrs, /* IN */
ns_ObjHandle_t *JunctionHandle, /* OUT */
ns_RemainingPath_t *RemainingPath); /* OUT */

Description
This procedure is used to make a directory junction identified by PathName in the specified
directory using the attributes specified by AttrBits with values found in Attrs. The resulting junction
will point to the directory specified by FilesetHandle.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the hpss_ConnectHandle that defines the connection
context for this user.

UserCreds Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestId The request identifier specified by the client.

Directory Pointer to the directory in which the new junction is to be created.

PathName Pointer to the path name of the new junction.

DontBackUp This parameter contains a boolean value. If the value is 1 and
any “..” components in the PathName would result in backing up
past the starting directory, the name server will stop processing
the request and return an error. If the value is 0 then the name
server will allow “..” path components to back up past the
starting directory. If an error is returned, the RemainingPath will
contain the remainder of the PathName.

FilesetId Pointer to the FilesetId of the fileset that the junction is being
inserted into. The purpose of this parameter is to insure the the

Chapter 2: Name Server Functions

2-32 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

new junction is inserted into the correct fileset. The name server
compares this FilesetId against the FilesetId of the junction’s
parent directory.

FilesetHandle A name server object handle that points to the root node of a
fileset. The root node of a fileset is a directory.

AttrBits A bit vector in which the appropriate bit is set (on) for each
attribute value that is to be obtained from the attribute structure,
Attrs, below.

Attrs Pointer to the structure containing the values for some metadata
fields that will be maintained for the new junction.

JunctionHandle The name server object handle that identifies the newly created
junction.

RemainingPath Pointer to the structure containing returned information that is
necessary to resolve the remainder of PathName.

Return Values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error Conditions.

Error Conditions
The ns_MkJunction procedure is unsuccessful and the name server data base remains
unchanged if any of the following are true:

HPSS_EACCES Search permission is denied on a component of the directory
path.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBACKOVER A PathName containing “..” components would have backed
over the PathName origin and the DontBackUp option was set to
‘true’.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The name server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EEXIST An object with the same path name already exists in the
directory.

HPSS_EINVAL The path name was “.” , “..” or NULL, or the value of a specified
InAttr is invalid.

HPSS_EIO An internal error occurred while writing to the name server data
base.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-33
Rev. 0

HPSS_EMDATA An inconsistency was encountered in the name server’s
metadata.

HPSS_EMOREPATH The name server could not fully resolve the input PathName.
Information to help resolve the PathName can be found in
RemainingPath.

HPSS_ENAMETOOLONG The length of the path name exceeds HPSS_MAX_PATH_NAME
or the length of a component of the path name exceeds
HPSS_MAX_FILE_NAME.

HPSS_ENOENT If the PathName is provided, a component of the PathName does
not exist or the PathName argument points to an empty string. If
only an object handle is provided, the object does not exist.

HPSS_ENOTDIR The Directory object handle is not to a valid directory.

HPSS_ENOTREADY The name server has not completed its initialization.

HPSS_ESTALE The generation number in the Directory is incorrect.

See also
ns_MkFileset, ns_DeleteFileset.

Clients
Client APIs, insif

Notes
If both the UID and the GID have been supplied in the Attrs structure these values will be
assigned to the junction. However if one or the other has been supplied, but not both, an error is
returned. If neither the UID or GID have been supplied in the Attrs structure, the UID is taken
from the credentials, and the GID is taken from the parent directory. All other attribute values
required to create the junction will be obtained from Attrs.

Junction points can only “point” to directories, anything else is an error. The supplied
FilesetHandleP must be of type Directory.

Only the Root user or a trusted user with DCE Write permission can create Junctions.

Chapter 2: Name Server Functions

2-34 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

2.1.13. ns_MkLink

Purpose
Create a (hard) link to a file.

Syntax
#include "cns_interface.h"

signed32
ns_MkLink (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
ns_ObjHandle_t *Directory, /* IN */
uchar *PathName, /* IN */
unsigned43 DontBackUp, /* IN */
u_signed64 *FilesetId, /* IN */
ns_ObjHandle_t *BitfileObjId, /* IN */
ns_ObjHandle_t *ObjHandle, /* OUT */
ns_RemainingPath_t *RemainingPath); /* OUT */

Description
This procedure is used to make a (hard) link entry identified by PathName in the specified
directory. This entry will be an alternate path (hard link) to the specified bitfile. The file being
linked to must be in the same fileset as the hard link.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

Directory Pointer to the directory in which the link is to be made.

PathName Pointer to the path name for the link.

DontBackUp This parameter contains a boolean value. If the value is 1 and
any “..” components in the PathName would result in backing up
past the starting directory, the name server will stop processing
the request and return an error. If the value is 0 then the name
server will allow “..” path components to back up past the
starting directory. If an error is returned, the RemainingPath will
contain the remainder of the PathName.

FilesetId Pointer to the FilesetId of the fileset that the link is being inserted
into. The purpose of this parameter is to insure the the new link
is inserted into the correct fileset. The name server compares
this FilesetId against the FilesetId of the link’s parent directory.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-35
Rev. 0

BitFileObjId The Name Server handle to the bitfile that is to be linked.

ObjHandle The Name Server handle that identifies the newly created hard
link.

RemainingPath Pointer to the structure containing returned information that is
necessary to resolve the remainder of PathName.

Return values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_MkLink procedure is unsuccessful and the Name Server data base remains unchanged if
any of the following are true:

HPSS_EACCES Search permission is denied on a component of the directory
path or write permission is denied on the directory in which the
link is to be made.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBACKOVER A PathName containing “..” components would have backed
over the PathName origin and the DontBackUp option was set to
‘true’.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The Name Server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EEXIST An object with the same path name already exists in the
directory.

HPSS_EINCONSISTENT The supplied FilesetId does not match the fileset being inserted
into.

HPSS_EINVAL The path name was ".", ".." or NULL or a value in the attribute
structure is invalid.

HPSS_EIO An internal error occurred while writing to the Name Server data
base.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EMLINK The maximum number of links, 32767, already exits.

HPSS_EMOREPATH The name server could not fully resolve the input PathName.
Information to help resolve the PathName can be found in
RemainingPath.

Chapter 2: Name Server Functions

2-36 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_ENAMETOOLONG The length of the path name exceeds HPSS_MAX_PATH_NAME
or the length of a component of the path name exceeds
HPSS_MAX_FILE_NAME.

HPSS_ENOENT A component of the PathName does not exist or the PathName
argument points to an empty string.

HPSS_ENOTDIR The object handle is not to a valid directory.

HPSS_ENOTREADY The Name Server has not completed its initialization.

HPSS_ESTALE The generation number in the Directory is incorrect.

HPSS_EXDEV. The link named by PathName and the file named by BitFileObjId
are on different filests.

See also
ns_Delete, ns_Insert, ns_MkDir, ns_MkSymLink.

Clients
Client APIs, insif.

Notes
The UID associated with the newly linked bitfile will be that of the UID found in the credentials
structure. The GID associated with the newly linked bitfile will be that of the GID associated with
the parent directory.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-37
Rev. 0

2.1.14. ns_MkSymLink

Purpose
Make a symbolic link.

Syntax
#include "cns_interface.h"

signed32
ns_MkSymLink (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
ns_ObjHandle_t *Directory, /* IN */
uchar *PathName, /* IN */
unsigned32 DontBackUp, /* IN */
u_signed64 *FilesetId, /* IN */
uchar *LinkText, /* IN */
ns_ObjHandle_t *ObjHandle, /* OUT */
ns_RemainingPath_t *RemainingPath); /* OUT */

Description
This transactional procedure is used to make a symbolic link identified by PathName in the
specified directory. The text stored for the symbolic link is pointed to by LinkText.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

Directory Pointer to the directory in which the symbolic link is to be made.

PathName Pointer to the path name for the symbolic link.

DontBackUp This parameter contains a boolean value. If the value is 1 and
any “..” components in the PathName would result in backing up
past the starting directory, the name server will stop processing
the request and return an error. If the value is 0 then the name
server will allow “..” path components to back up past the
starting directory. If an error is returned, the RemainingPath will
contain the remainder of the PathName.

FilesetId Pointer to the FilesetId of the fileset that the symbolic link is being
inserted into. The purpose of this parameter is to insure the the
new symbolic link is inserted into the correct fileset. The name
server compares this FilesetId against the FilesetId of the
symbolic link’s parent directory.

Chapter 2: Name Server Functions

2-38 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

LinkText Pointer to the data that will be stored for the symbolic link.

ObjHandle The Name Server handle that identifies the newly created
symbolic link.

RemainingPathP Pointer to the structure containing returned information that is
necessary to resolve the remainder of PathName.

Return values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_MkSymLink procedure is unsuccessful and the Name Server data base remains
unchanged if any of the following are true:

HPSS_EACCES Search permission is denied on a component of the directory
path or write permission is denied on the directory in which the
symbolic link is to be made.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBACKOVER A PathName containing “..” components would have backed
over the PathName origin and the DontBackUp option was set to
‘true’.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The Name Server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EEXIST An object with the same path name already exists in the
directory.

HPSS_EINCONSISTENT The supplied FilesetId does not match the fileset being inserted
into.

HPSS_EINVAL The path name was ".", ".." or NULL.

HPSS_EIO An internal error occurred while writing to the Name Server data
base.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EMOREPATH The name server could not fully resolve the input PathName.
Information to help resolve the PathName can be found in
RemainingPath.

HPSS_ENAMETOOLONG The length of the path name or the link text exceeds
HPSS_MAX_PATH_NAME or the length of a component in the
path name exceeds HPSS_MAX_FILE_NAME.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-39
Rev. 0

HPSS_ENOENT A component of the PathName does not exist or the PathName
argument points to an empty string. HPSS_ENOTDIR The
object handle is not to a valid directory.

HPSS_ENOTREADY The Name Server has not completed its initialization.

HPSS_ESTALE The generation number in the Directory is incorrect.

See also
ns_Delete, ns_Insert, ns_MkDir, ns_MkLink.

Clients
Client APIs, insif.

Notes
The UID associated with the newly created symbolic link will be that of the UID found in the
credentials structure. The GID associated with the newly created symbolic link will be that of the
GID associated with the parent directory.

Chapter 2: Name Server Functions

2-40 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

2.1.15. ns_NSGetAttrs

Purpose
Get the configurable data of the Name Server.

Syntax
#include "cns_interface.h"

signed32
ns_NSGetAttrs (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
ns_SpecificConfig_t *ConfigData); /* OUT*/

Description
Non-transactional procedure used to return the Name Server’s configurable data in ConfigData.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

ConfigData Pointer to the structure which will contain the values from the
specific configurable data.

Return values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_NSGetAttrs procedure is unsuccessful and the Name Server’s configurable data is not
returned if any of the following are true:

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EMDATA An inconsistency was encountered in the name server’s
metadata.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_ENOTREADY The Name Server has not completed its initialization.

See also
ns_NSSetAttrs.

Clients

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-41
Rev. 0

Storage System Manager.

Notes
The in-memory copy of the configuration data is returned by this API. The configuration data is
read once during initialization from the Name Server’s specific configuration file. Any changes
made to the file after the Name Server’s initialization will not be visible until the Name Server is
restarted.

Chapter 2: Name Server Functions

2-42 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

2.1.16. ns_NSSetAttrs

Purpose
Set the modifiable fields of the in-memory copy of the Name Server’s configuration data.

Syntax
#include "cns_interface.h"

signed32
ns_NSSetAttrs (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
ns_ConfigBits_t InConfigBits, /* IN */
ns_SpecificConfig_t *InConfigData, /* IN */
ns_ConfigBits_t *OutConfigBits, /* OUT */
ns_SpecificConfig_t *OutConfigData); /* OUT */

Description
Set the fields of the configuration data specified by InConfigBits to the values in InConfigData.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

InConfigBits A bit vector in which the appropriate bit is set (on) for each field in
the configuration data provided in InConfigData.

InConfigData Pointer to the structure containing the values that the
configuration data is to be set to.

OutConfigBits A bit vector in which the appropriate bit is set (on) for each of the
fields in the configuration data that were set.

OutConfigData Pointer to the structure containing the values that the
configurable data was set to.

Return values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_NSSetAttrs procedure is unsuccessful and the Name Server’s configuration data
remains unchanged if any of the following are true:

HPSS_EBADCONN The supplied connection context is not formatted as expected.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-43
Rev. 0

HPSS_EMDATA An inconsistency was encountered in the name server’s
metadata.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_ENOTREADY The Name Server has not completed its initialization.

See also
ns_NSGetAttrs.

Clients
Storage System Manager.

Notes
Only the in-memory copy of the name server’s configuration data will be changed. The data
stored in the file can be modified through the metadata manager utilities. The only fields of the
configuration data that can be set are the maximum path components, maximum byte size of the
readdir buffer and the default file and directory permissions.

Chapter 2: Name Server Functions

2-44 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

2.1.17. ns_ReadDir

Purpose
Return a list of directory entries.

Syntax
#include "cns_interface.h"

signed32
ns_ReadDir (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
ns_ObjHandle_t *Directory, /* IN */
unsigned32 Offset, /* IN */
unsigned32 BuffSize, /* IN */
unsigned32 ReturnAtrrsFlag, /* IN */
ns_AttrBits_t BitsForOutAttrs, /* IN */
unsigned32 *EndOfDir, /* OUT */
ns_DirEntry_t **Entries); /* OUT */

Description
Return a list of directory entries starting at the location indicated by Offset, the continuation
cookie. Entries will be returned until the addition of another would cause the total to exceed the
specified buffer size, or until the end of the directory is reached. The value of EndOfDir will be 1 if
an attempt is made to read past the last entry. If the attributes for the entries are requested those
attributes specified in BitsForOutAttrs will be returned for each entry in the directory.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

Directory Pointer to the directory whose contents are to be read.

Offset Pointer to the entry in the directory where the listing is to begin.
The Offset is also known as the continuation cookie.

BuffSize The size in bytes of the buffer that the client has to hold the
entries that will be read.

ReturnAttrsFlag Indicates if attributes are to be returned for each directory entry.
When this value is 1, the attributes specified by BitsForOutAttrs
will be returned. If the value of this flag is 0, no attributes will be
returned.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-45
Rev. 0

BitsForOutAttrs A bit vector in which the appropriate bit is set (on) for each
attribute value that is to be returned in the attribute structure
associated with each directory entry.

EndOfDir A pointer to a flag that is set to 1 whenever the Name Server
reaches the end of the directory.

Entries Pointer to the list of directory entries that are returned. Each
entry in the list consists of the object’s name, Name Server
object handle, a continuation cookie, and any requested
attributes.

Return values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_ReadDir procedure is unsuccessful and no Entries are returned if any of the following are
true:

HPSS_EACCES Search permission is denied on a component of the directory
path or read permission is denied on the directory that is to be
read.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The Name Server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EIO An internal error occurred while reading from or writing to the
Name Server data base.

HPSS_ENOTDIR The object handle is not to a valid directory.

HPSS_ENOTREADY The Name Server has not completed its initialization.

HPSS_ERANGE The buffer used by the client to receive the list of directory entries
is too small to hold a complete entry.

HPSS_ESTALE The generation number in the Directory is incorrect.

See also
ns_GetAttr, ns_ReadLink.

Clients
Client APIs, insif.

Chapter 2: Name Server Functions

2-46 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Notes
None.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-47
Rev. 0

2.1.18. ns_ReadFilesetAttrs

Purpose
Return an array of fileset entries.

Syntax
#include <cns_interface.h>

signed32
ns_ReadFilesetAttrs (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCreds, /* IN */
unsigned32 RequestId, /* IN */
u_signed64 Offset, /* IN */
unsigned32 HowMany, /* IN */
unsigned32 *EndOfFSEntries, /* OUT */
ns_FilesetAttrsConfArray_t); **FilesetEntries); /* OUT */

Description
Return an array of fileset entries starting at the location indicated by Offset, the continuation
cookie. Fileset entries will be returned until all of the fileset entries have been returned or until
HowMany entries have been placed in the FilesetEntries array. The value of EndOfFSEntries will
be set to 1 whenever there are no more FilesetAttr records to return.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the hpss_ConnectHandle that defines the connection
context for this user.

UserCreds Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestId The request identifier specified by the client.

Offset Pointer to the fileset entry where the listing is to begin. The
Offset is also known as the Continuation cookie. Offset should
have a value of zero to begin reading at the beginning of the
fileset entries.

HowMany The maximum number of fileset entries the client wishes to have
returned. The name server will return the minumum of HowMany
and NS_FS_MAX_ENTRIES_TO_RETURN.

EndOfFSEntries A pointer to a flag that is set to 1 when there are no more
FilesetAttr records to return.

FilesetEntries Pointer to the conformant array of fileset entries that are
returned. Each element of the array contains the fileset name,
FilesetId, a continuation cookie, the fileset state, and the fileset
type.

Return Values

Chapter 2: Name Server Functions

2-48 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error Conditions.

Error Conditions
The ns_ReadFilesetAttrs procedure is unsuccessful and no FSEntries are returned if any of the
following are true:

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The name server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EIO An internal error occurred while reading from the name server
data base.

HPSS_ENOTREADY The name server has not completed its initialization.

See also
ns_DeleteFileset, ns_GetFilesetAttrs, and ns_MkFileset.

Clients
Client APIs, insif

Notes
None.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-49
Rev. 0

2.1.19. ns_ReadGlobalFilesets

Purpose
Return an array of global fileset entries.

Syntax
#include <cns_interface.h>

signed32
ns_ReadGlobalFilesets(

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCreds, /* IN */
unsigned32 RequestId, /* IN */
unsigned32 WhichUUID, /* IN */
uuid_t *UUID, /* IN */
u_signed64 Offset, /* IN */
unsigned32 HowMany, /* IN */
unsigned32 *EndOfEntries, /* OUT */
ns_GFilesetConfArray_t **GFilesetEntries); /* OUT */

Description
Return an array of global fileset entries from the global fileset metadata file. WhichUUID indicates
whether the returned list is for all of the filesets, or is for the filesets managed by a particular
Name Server or Gateway. See below for more details about WhichUUID. The starting location in
the global fileset array is indicated by Offset, the continuation cookie. Entries will be returned until
all of the global fileset entries have been returned or until HowMany entries have been placed in
the GFilesetEntriesPP array. The value of EndOfEntries will be set to 1 when there are no more
global entries to return.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the hpss_ConnectHandle that defines the connection
context for this user.

UserCreds Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestId The request identifier specified by the client.

WhichUUID Determines which entries are to be read from the global fileset
array. See the Notes below for details.

UUID Depending on the value of WhichUUID this parameter may point
to either a Gateway UUID or a Name Server UUID.

Offset Pointer to the global fileset entry where the listing is to begin.
The Offset is also known as the Continuation cookie. Offset
should have a value of zero to begin reading at the beginning of
the global fileset entries.

Chapter 2: Name Server Functions

2-50 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HowMany The maximum number of fileset entries the client wishes to have
returned. The name server will return the minumum of HowMany
and NS_FS_MAX_ENTRIES_TO_RETURN.

EndOfEntries A pointer to a flag that is set to 1 whenever there are no more
entries to read.

GFilesetEntries Pointer to the conformant array of fileset entries that are
returned. Each element of the array contains the fileset name,
FilesetId, a continuation cookie, the UUID of the gateway that
manages this fileset, and the UUID of the Name Server that
manages this fileset.

Return Values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error Conditions.

Error Conditions
The ns_ReadGlobalFilesets procedure is unsuccessful and no Entries are returned if any of the
following are true:

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The name server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EIO An internal error occurred while reading from the name server
data base.

HPSS_ENOTREADY The name server has not completed its initialization.

See also
ns_ReadFilesets.

Clients
Client APIs, insif

Notes
WhichUUID may contain any of the following values:

NS_READ_G_FS_ALL All of the entries in the global filesets array will be read.

NS_READ_G_FS_BY_GW_UUID The UUID parameter points to the UUID of a particular
Gateway. Only the entires having this Gateway UUID will
be read.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-51
Rev. 0

NS_READ_G_FS_BY_NS_UUID The UUID parameter points to the UUID of a particular
Name Server. Only the entries having this Name Server
UUID will be read.

Chapter 2: Name Server Functions

2-52 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

2.1.20. ns_ReadJunctionPathNames

Purpose
Return an array of Junction path names.

Syntax
#include <cns_interface.h>

signed32
ns_ReadJunctionPathNames(

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCreds, /* IN */
unsigned32 RequestId, /* IN */
u_signed64 Offset, /* IN */
unsigned32 HowMany, /* IN */
unsigned32 *EndOfEntries, /* OUT */
ns_JunctionPathConfArray_t **JunctionEntries); /* OUT */

Description
Return an array of path names to all of the Junctions managed by this Name Server. The starting
location in the JunctionEntries array is indicated by Offset, the continuation cookie. Junction
entries will be returned until all of the junction entries have been returned or until HowMany entries
have been placed in the JunctiontEntries array. The value of EndOfEntries will be set to 1 when
there are no more junction entries to return.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the hpss_ConnectHandle that defines the connection
context for this user.

UserCreds Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestId The request identifier specified by the client.

Offset Pointer to the junction entry where the listing is to begin. The
Offset is also known as the Continuation cookie. Offset should
have a value of zero to begin reading at the beginning of the
junction entries.

HowMany The maximum number of junction entries the client wishes to
have returned. The name server will return the minumum of
HowMany and NS_FS_MAX_ENTRIES_TO_RETURN.

EndOfEntries A pointer to a flag that is set to 1 whenever there are no more
entries to read.

JunctionEntries Pointer to the conformant array of junction entries that are
returned. Each element of the array contains a fileset handle,
junction handle, Offset, and the path name to the Junction.

Return Values

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-53
Rev. 0

Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error Conditions.

Error Conditions
The ns_ReadJunctionPathNames procedure is unsuccessful and no entries are returned if any of
the following are true:

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The name server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EIO An internal error occurred while reading from the name server
data base.

HPSS_ENOTREADY The name server has not completed its initialization.

See also
ns_ReadFilesets.

Clients
Client APIs, insif

Notes
none

Chapter 2: Name Server Functions

2-54 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

2.1.21. ns_ReadLink

Purpose
Read the data associated with a symbolic link.

Syntax
#include "cns_interface.h"

signed32
ns_ReadLink (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
ns_ObjHandle_t *Directory, /* IN */
uchar *PathName, /* IN */
unsigned32 DontBackUp, /* IN */
uchar *LinkText, /* OUT */
ns_RemainingPath_t *RemainingPath); /* OUT */

Description
This procedure is used to return the data associated with the symbolic link identified by PathName
in the specified Directory. If no PathName is supplied, the symbolic link identified by Directory will
be returned.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

Directory Pointer to the directory which contains the symbolic link.

PathName Pointer to the path name for the symbolic link.

DontBackUp This parameter contains a boolean value. If the value is 1 and
any “..” components in the PathName would result in backing up
past the starting directory, the name server will stop processing
the request and return an error. If the value is 0 then the name
server will allow “..” path components to back up past the
starting directory. If an error is returned, the RemainingPath will
contain the remainder of the PathName.

LinkText Pointer to the uninterpreted data that is to be returned.

RemainingPath Pointer to the structure containing returned information that is
necessary to resolve the remainder of PathName.

Return values

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-55
Rev. 0

Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_ReadLink procedure is unsuccessful and the Name Server data base remains
unchanged if any of the following are true:

HPSS_EACCES Search permission is denied on a component of the directory
path or read permission is denied on the symbolic link that is to
be read.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBACKOVER A PathName containing “..” components would have backed
over the PathName origin and the DontBackUp option was set to
‘true’.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The Name Server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EIO An internal error occurred while reading from the name server
data base.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EMOREPATH The name server could not fully resolve the input PathName.
Information to help resolve the PathName can be found in
RemainingPath.

HPSS_ENAMETOOLONG The length of the path name exceeds HPSS_MAX_PATH_NAME
or the length of a component in the path name exceeds
HPSS_MAX_FILE_NAME.

HPSS_ENOENT A component of the path name does not exist.

HPSS_ENOTDIR The object handle is not to a valid directory.

HPSS_ENOTREADY The Name Server has not completed its initialization.

HPSS_ESTALE The generation number in the Directory is incorrect.

See also
ns_GetAttr, ns_MkSymLink.

Clients
Client APIs, insif.

Notes
None.

Chapter 2: Name Server Functions

2-56 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

2.1.22. ns_Rename

Purpose
Rename a name space object.

Syntax
#include "cns_interface.h"
signed32
ns_Rename (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
ns_ObjHandle_t *CurrentDir, /* IN */
uchar *CurrentPath, /* IN */
ns_ObjHandle_t *NewDir, /* IN */
uchar *NewPath, /* IN */
unsigned32 DontBackUp, /* IN */
ns_RemainingPath_t *CurrentRemainPath, /* OUT */
ns_RemainingPath_t *NewReaminPath); /* OUT */

Description
Rename a Name Server object to the specified new name. The new name may not previously
exist. The renamed entry specified by NewDir and NewPath must reside in the same fileset as
the current entry named by CurrentDir and CurrentPath.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

CurrentDir Pointer to the directory where the object currently resides.

CurrentPath Pointer to the current path name of the object.

NewDir Pointer to directory where the object is to be moved.

NewPath Pointer to the new path name of the object.

DontBackUp This parameter contains a boolean value. If the value is 1 the
name server will stop processing the request if any “..”
components in either the CurrentPath or the NewPath restult in
backing up past the starting directory. If the value is 0 then the
name server will allow “..” path components in either the
CurrentPath or the NewPath to back up past the starting
directory.

CurrentRemainPath Pointer to the structure containing the information necessary to
resolve the remainder of the CurrentPath.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-57
Rev. 0

NewRemainPath Pointer to the structure containing the information necessary to
resolve the remainder of the NewPath.

Return values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_Rename procedure is unsuccessful and the Name Server data base remains unchanged
if any of the following are true:

HPSS_EACCES Search permission is denied on a component of either the
current or new path name or write permission is denied on either
the current or new directory.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBACKOVER A CurrentPath or a NewPath containing “..” components would
have backed over the PathName origin and the DontBackUp
option was set to ‘true’.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The Name Server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EEXIST An object specified by the new path name already exists in the
new directory.

HPSS_EINVAL The object to be renamed (moved) is a parent directory of the
current directory. This error is also returned if either the current
or new path name is ".", ".." or NULL.

HPSS_EIO An internal error occurred while reading from or writing to the
Name Server data base.

HPSS_ENAMETOOLONG The length of either the current or new path name exceeds
HPSS_MAX_PATH_NAME or the length of a component in
either the current or new path name exceeds
HPSS_MAX_FILE_NAME.

HPSS_ENOENT A component of either the current or new path does not exist or
the argument to the new path name points to an empty string.

HPSS_ENOTDIR Either the current or new object handle is not to a valid directory.

HPSS_ENOTREADY The Name Server has not completed its initialization.

HPSS_ESTALE The generation number in the Directory is incorrect.

Chapter 2: Name Server Functions

2-58 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_EXDEV. The entry named by CurrentDir and CurrentPath and the entry
named by NewDir and NewPath are on different filests.

See also
None.

Clients
Client APIs, insif.

Notes
The POSIX standards state that, if the new path name already exists in the new directory, it is
removed. The HPSS design requires that the error EEXIST be returned if this situation occurs.
An explicit delete of any existing entry with new name must be done by the client before the
rename can be successful.

The resulting new name must exist in the same fileset as the Current name.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-59
Rev. 0

2.1.23. ns_ServerGetAttrs

Purpose
Get the Name Server state data.

Syntax
#include "cns_interface.h"

signed32
ns_ServerGetAttrs (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
hpss_server_attrib_t *StateData); /* OUT */

Description
Get the Name Server’s global state data.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

StateData Pointer to the structure containing the Name Server’s state.

Return values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_ServerGetAttrs procedure is unsuccessful and the Name Server state data is not
returned if any of the following are true:

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EMDATA An inconsistency was encountered in the name server’s
metadata.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EIO An internal error occurred while processing the request.

HPSS_ENOTREADY The Name Server has not completed its initialization.

See also
ns_ServerSetAttrs.

Chapter 2: Name Server Functions

2-60 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Clients
Storage System Manager, insif.

Notes
None.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-61
Rev. 0

2.1.24. ns_ServerSetAttrs

Purpose

Set the Name Server state data.

Syntax
#include "cns_interface.h"

signed32
ns_ServerSetAttrs (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
u_signed64 StateBits, /* IN */
hpss_server_attrib_t *StateData, /* IN */
u_signed64 *OutStateBits, /* OUT */
hpss_server_attrib_t *OutStateData); /* OUT */

Description
Set the Name Server’s global state data specified by StateBits to the values in StateData.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

StateBits A bit vector indicating which fields of the Name Server state data
are to be set.

StateData Pointer to the structure containing the data to set the Name
Server’s state to.

OutStateBits A bit vector indicating which fields of the Name Server state data
were set.

OutStateData Pointer to the structure containing the state data that the Name
Server was set to.

Return values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_ServerSetAttrs procedure is unsuccessful and the Name Server state data is not set if
any of the following are true:

Chapter 2: Name Server Functions

2-62 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EMDATA An inconsistency was encountered in the name server’s
metadata.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EIO An internal error occurred while processing the request.

HPSS_EPERM Only SSM is allowed to set the Name Server’s global state data.

HPSS_ENOTREADY The Name Server has not completed its initialization.

HPSS_ENOTSUPPORTED The Name Server does not currently support the requested
operation.

See also
ns_ServerGetAttrs.

Clients
Storage System Manager, insif.

Notes
None.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-63
Rev. 0

2.1.25. ns_SetACL

Purpose
Set the ACL of the specified Name Server object.

Syntax
#include "cns_interface.h"

signed32
ns_SetACL (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
ns_ObjHandle_t *Directory, /* IN */
uchar *PathName, /* IN */
unsigned32 DontBackUp, /* IN */
ns_ACLConfArray_t *NewACLEntries, /* IN */
ns_RemainingPath_t *RemainingPath); /* OUT */

Description
Set the ACL of the object identified by PathName to that specified by the new ACL. If no
PathName is supplied, the ACLs are set on the object identified by Directory.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

Directory Pointer to the directory containing the object whose ACL is to be
set.

PathName Pointer to the path name of the object whose ACL is to be set.

DontBackUp This parameter contains a boolean value. If the value is 1 and
any “..” components in the PathName would result in backing up
past the starting directory, the name server will stop processing
the request and return an error. If the value is 0 then the name
server will allow “..” path components to back up past the
starting directory. If an error is returned, the RemainingPath will
contain the remainder of the PathName.

NewACLEntries Pointer to the array of new ACL entries. If NewACLEntries is
null, all ACL entries for the object will be deleted.

RemainingPath Pointer to the structure containing returned information that is
necessary to resolve the remainder of PathName.

Return values

Chapter 2: Name Server Functions

2-64 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_SetACL procedure is unsuccessful and the Name Server data base remains unchanged
if any of the following are true:

HPSS_EACCES Search permission is denied on a component of the directory
path, or the owner does not have write permission, or others do
not have control permission.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBACKOVER A PathName containing “..” components would have backed
over the PathName origin and the DontBackUp option was set to
‘true’.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The Name Server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EIO An internal error occurred while reading from or writing to the
Name Server data base.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EMOREPATH The name server could not fully resolve the input PathName.
Information to help resolve the PathName can be found in
RemainingPath.

HPSS_ENAMETOOLONG The length of the path name exceeds HPSS_MAX_PATH_NAME
or the length of a component in the path name exceeds
HPSS_MAX_FILE_NAME.

HPSS_ENOENT A component in the path name does not exist.

HPSS_ENOTDIR The object handle is not to a valid directory.

HPSS_ENOTREADY The Name Server has not completed its initialization.

HPSS_ESTALE The generation number in the Directory is incorrect.

See also
ns_DeleteACL, ns_GetACL, ns_UpdateACL.

Clients
Client APIs, insif.

Notes
None.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-65
Rev. 0

2.1.26. ns_SetAttrs

Purpose
Set the attributes of the specified Name Server object.

Syntax
#include "cns_interface.h"

signed32
ns_SetAttrs (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
ns_ObjHandle_t *Directory, /* IN */
uchar *PathName, /* IN */
unsigned32 DontBackUp, /* IN */
ns_AttrBits_t InAttrBits, /* IN */
ns_Attrs_t *InAttrs, /* IN */
gss_token_t *InAcsTicket, /* IN */
unsigned32 ReturnAttrsFlag, /* IN */
ns_AttrBits_t BitsForOutAttrs, /* IN */
ns_Attrs_t *OutAttrs, /* OUT */
gss_token_t *OutAcsTicket, /* OUT*/
ns_RemainingPath_t *RemainingPath); /* OUT */

Description
Set the metadata fields of the object identified by Directory and PathName. The specific attributes
to be set are identified by InAttrBits and the values these fields are to be set to are found in
InAttrs. If return attributes are requested, the attributes specified in BitsForOutAttrs are returned
in OutAttrs. If no PathName is supplied, the attributes are set on the object identified by Directory.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

Directory Pointer to the directory containing the object whose attributes are
to be set.

PathName Pointer to the path name of the object whose attributes are to be
set.

DontBackUp This parameter contains a boolean value. If the value is 1 and
any “..” components in the PathName would result in backing up
past the starting directory, the name server will stop processing
the request and return an error. If the value is 0 then the name
server will allow “..” path components to back up past the

Chapter 2: Name Server Functions

2-66 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

starting directory. If an error is returned, the RemainingPath will
contain the remainder of the PathName.

InAttrBits A bit vector in which the appropriate bit is set (on) for each
attribute value that is provided in the attribute structure, InAttrs,
below.

InAttrs Pointer to the structure containing the values that the object’s
fields are to be set to.

InAcsTicket Pointer to an access ticket containing the encrypted bitfile ID. If
the bitfile ID is to be set, this bitfile ID must match the bitfile ID
specified in InAttrs.

ReturnAtttrsFlag Indicates if the newly set attributes are to be returned. When the
value of the flag is 1, the attributes specified by BitsForOutAttrs
will be returned. If the value of the flag is 0, no attributes will be
returned.

BitsForOutAttrs A bit vector in which the appropriate bit is set (on) for each
attribute value that is to be returned in OutAttrs.

OutAttrs Pointer to a structure containing the attributes specified by
BitsForOutAttrs for the object.

OutAcsTicket Pointer to a ticket that contains the access rights (determined
from the ACLs) to the bitfile for the user identified in UserCred. If
this pointer is null on input, a ticket will not be returned. The
return argument will be null if a connection to the BFS cannot be
established or the path name refers to an object other than a file.

RemainingPathP Pointer to the structure containing returned information that is
necessary to resolve the remainder of PathName.

Return values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_SetAttr procedure is unsuccessful and the Name Server data base remains unchanged if
any of the following are true:

HPSS_EACCES Search permission is denied on a component of the directory
name or write permission is denied on the object whose
attributes are to be set.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBACKOVER A PathName containing “..” components would have backed
over the PathName origin and the DontBackUp option was set to
‘true’.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-67
Rev. 0

HPSS_EBADCREDS The Name Server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EBADF The bitfile identifier is not to a valid file.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EINVAL The path name identifies a "." or ".." directory.

HPSS_EIO An internal error occurred while reading from or writing to the
Name Server data base.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EMOREPATH The name server could not fully resolve the input PathName.
Information to help resolve the PathName can be found in
RemainingPath.

HPSS_ENAMETOOLONG The length of the path name exceeds HPSS_MAX_PATH_NAME
or the length of a component in the path name exceeds
HPSS_MAX_FILE_NAME.

HPSS_ENOENT A component of the directory path does not exist.

HPSS_ENOTDIR The object handle is not to a valid directory.

HPSS_ENOTREADY The Name Server has not completed its initialization.

HPSS_EPERM The UID in the credentials is not super-user or the owner of the
object or the owner is not a member of the new group. This error
can occur when updating the mode, times, UID or GID fields.

HPSS_ESTALE The generation number in the Directory is incorrect.

See also
ns_GetAttr.

Clients
Client APIs, insif.

Notes
Valid bits for the InAttrBits are defined in the data definition section. Certain attributes associated
with a bit file, such as size and bits for OutAttrs, time last accessed and time last modified must
be changed through the BFS. To change the UID of the object the credentials must belong to
either super-user or to the owner of the object. To change the GID of the object the credentials
must belong to either super-user or to the owner of the object and the owner must be a member
of the new group. To change the "accessed" or "modified" times of the object the credentials
must belong to either the super-user or the owner of the object. Any user with write access to the
object may update the "accessed" or "modified" times to the current time by setting the
appropriate bit in the bit map and supplying a null value for the time.

Fileset attributes can only be changed using the ns_SetFilesetAttrs API.

Chapter 2: Name Server Functions

2-68 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

2.1.27. ns_SetFilesetAttrs

Purpose
Set the attributes of the specified name server fileset.

Syntax
#include <cns_interface.h>

signed32
ns_SetFilesetAttrs (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCreds, /* IN */
unsigned32 RequestId, /* IN */
ns_ObjHandle_t *FilesetHandle, /* IN */
u_signed64 *FilesetId, /* IN */
ns_FilesetAttrBits_t InAttrBits, /* IN */
ns_FilesetAttrs_t *InAttrs, /* IN */
ns_FilesetAttrBits_t BitsForOutAttrs, /* IN */
ns_FilesetAttrs_t *OutAttrs); /*OUT */

Description
Set the metadata fields of the fileset identified by FilesetHandleP or FilesetId. The specific
attributes to be set are identified by InAttrBits and the values to which these fields are to be set
are found in InAttrs.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the hpss_ConnectHandle that defines the connection
context for this user.

UserCreds Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestId The request identifier specified by the client.

FilesetHandle Pointer to an object handle which uniquely identifies the fileset
whose attributes are to be set. If the FilesetHandle is NULL the
FilesetId will be used. See the Notes below for more details.

FilesetId Pointer to a unique fileset identifier which specifies the fileset root
object whose fileset attributes are to be set. If the FilesetId is
NULL the FilesetHandle will be used. See the Notes below for
more details.

InAttrBits A bit vector in which the appropriate bit is set (on) for each
attribute value that is provided in the fileset attribute structure,
InAttrs, below.

InAttrs Pointer to the structure containing the values, if any, that are to
be put into the fileset.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-69
Rev. 0

BitsForOutAttrs A bit vector in which the appropriate bit is set (on) for each
attribute value that is to be returned in OutAttrs.

OutAttrs Pointer to a structure containing the attributes specified by
BitsForOutAttrs.

Return Values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error Conditions.

Error Conditions
The ns_SetFilesetAttr procedure is unsuccessful and the name server data base remains
unchanged if any of the following are true:

HPSS_EACCES The client is not the Root user.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The name server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EINVAL An attempt was made to change the FilesetId or the
FilesetHandle.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EIO An internal error occurred while reading from or writing to the
name server data base.

HPSS_ENOTREADY The name server has not completed its initialization.

See also
ns_GetFilesetAttr

Clients
Client APIs, insif

Notes
If both the FilesetHandle and FilesetId are non-NULL the Name Server will insure that they both
point to the same object. If they do not, an error will be returned. If both are NULL an error will be
returned.

Valid bits for the InAttrBits are defined in the data definition section.

If a FilesetHandle is supplied performance will be slower because the Name Server will have to
access the indicated object block.

Chapter 2: Name Server Functions

2-70 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

2.1.28. ns_Statistics

Purpose
Initialize and/or return the Name Server’s statistics.

Syntax
#include <cns_interface.h>

signed32
ns_Statistics (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCreds, /* IN */
unsigned32 RequestId, /* IN */
unsigned32 Options, /* IN */
ns_StatisticsRec_t *StatsRecord); /* OUT */

Description
This procedure is used to get the Name Server's statistics or to re-initialize the Name Server's
Fileset Cache. If the caller is asking for the statistics it is possible to re-initialize these statistics.
See the Notes below for more information about Options

Parameters
BindH The remote procedure call explicit binding handle.

ConnectHP Pointer to the hpss_ConnectHandle that defines the connection
context for this user.

UserCredsP Pointer to the end user's credentials on whose behalf the request
is being made.

RequestId The request identifier specified by the client.

Options Used to control the Name Server’s behavior while gathering the
statistics. See the Notes below.

StatsRecordP Ponter to the StatisticsRec containing the Name Server’s
statistics.

Return Values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error Conditions.

Error Conditions
The ns_SetAttr procedure is unsuccessful and the name server data base remains unchanged if
any of the following are true:

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The name server couldn’t convert the HPSS credentials into a
form suitable for internal use.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-71
Rev. 0

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_ENOTREADY The name server has not completed its initialization.

See Also
None

Clients
SSM, insif

Notes
The statistics record returned by this call is the Name Server’s global statistics record. This
record contains statistics about the use of Name Server functions, errors, block usage, and other
miscellaneous information. These statistics are not “long term” statistics. This is the data
accumulated since the Name Server was last started or since the statistics record was last
initialized.

The statistics record can be re-initialized (set to zero) by turning on the appropriate bit in the
Options parameter. This bit can be set by or’ing in the constant “NS_REINIT_STATISTICS”.
When the statistics record is re-initialized, the StatisticsStartTime is set to the current time. The
following constants can be used to set the Options parameter:

NS_STATS_DONT_REINIT_STATISTICS the statistics record is returned and left
unaltered.

NS_STATS_REINIT_STATS the statistics record is returned, it is then set to
zero, and the StatisticsStartTime is set to the
current time.

NS_STATS_REINIT_FS_CACHE the Name Server's fileset cache will be re-
initialized. This is done by freeing all of the
currently held heap space and then calling
InitFilesetCache. No statistics are returned.

Chapter 2: Name Server Functions

2-72 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

2.1.29. ns_UpdateACL

Purpose
Update the ACL entries for the specified Name Server object.

Syntax
#include "cns_interface.h"

signed32
ns_UpdateACL (

trpc_handle_t BindH, /* IN */
hpss_connect_handle_t *ConnectH, /* IN */
hsec_UserCred_t *UserCred, /* IN */
unsigned32 RequestID, /* IN */
ns_ObjHandle_t *Directory, /* IN */
uchar *PathName, /* IN */
unsigned32 DontBackUp, /* IN */
unsigned32 Options, /* IN */
ns_ACLConfArray_t *ACLEntries); /* IN */
ns_RemainingPath_t *RemainingPath); /* OUT */

Description
Update the specified entries of the ACL associated with the object identified by PathName. If no
PathName is supplied, the ACLs for the object identified by Directory are updated.

Parameters
BindH The remote procedure call explicit binding handle.

ConnectH Pointer to the handle that defines the connection context for this
user.

UserCred Pointer to the end user’s credentials on whose behalf the request
is being made.

RequestID The request identifier specified by the client.

Directory Pointer to the directory containing the object whose ACL is to be
updated.

PathName Pointer to the path name of the object whose ACL is to be
updated.

DontBackUp This parameter contains a boolean value. If the value is 1 and
any “..” components in the PathName would result in backing up
past the starting directory, the name server will stop processing
the request and return an error. If the value is 0 then the name
server will allow “..” path components to back up past the
starting directory. If an error is returned, the RemainingPath will
contain the remainder of the PathName.

Options A bit vector containing bits which control the behavior of
ns_UpdateACL while calculating the MASK_OBJ. See the
Notes below for more information.

ACLEntries Pointer to the ACL entries that are to be updated.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-73
Rev. 0

RemainingPath Pointer to the structure containing returned information that is
necessary to resolve the remainder of PathName.

Return values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the
Error conditions.

Error conditions
The ns_UpdateACL procedure is unsuccessful and the Name Server data base remains
unchanged if any of the following are true:

HPSS_EACCES Search permission is denied on a component of the directory
path, or the owner does not have write permission, or others do
not have control permission.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_EBACKOVER A PathName containing “..” components would have backed
over the PathName origin and the DontBackUp option was set to
‘true’.

HPSS_EBADCONN The supplied connection context is not formatted as expected.

HPSS_EBADCREDS The Name Server couldn’t convert the HPSS credentials into a
form suitable for internal use.

HPSS_EENTERCONN An error was encountered while attempting to enter the
connection.

HPSS_EIO An internal error occurred while reading from or writing to the
Name Server data base.

HPSS_EMDATA An inconsistency was encountered in the name server's
metadata.

HPSS_EMOREPATH The name server could not fully resolve the input PathName.
Information to help resolve the PathName can be found in
RemainingPath.

HPSS_ENAMETOOLONG The length of the path name exceeds HPSS_MAX_PATH_NAME
or the length of a component in the path name exceeds
HPSS_MAX_FILE_NAME.

HPSS_ENOENT A component of the path name does not exist.

HPSS_ENOTDIR The object handle is not to a valid directory.

HPSS_ENOTREADY The Name Server has not completed its initialization.

HPSS_ESTALE The generation number in the Directory is incorrect.

See also
ns_DeleteACL, nsGetACL, ns_SetACL.

Clients

Chapter 2: Name Server Functions

2-74 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Client APIs, insif.

Notes
Options can be used to mimic the behavior of the following acl_edit options: -n, -c, and -p. This
mimicking is done using the following constants:

DONT_CALCULATE MASK
Specifies that a new mask should not be calculated. This option is useful only for objects
that are required to recalculate a new mask after they are modified. If a modify operation
creates a mask that unintentionally adds permissions to an existing ACL entry, the modify
causing the mask recalculation will abort with an error unless you specify either the
CALCULATE_MASK_IGNORE_ERRORS or DONT_CALCULATE_MASK option.

CALCULATE_MASK_IGNORE_ERRORS
Creates or modifies the object’s MASK_OBJ type entry with permissions equal to the
union of all entries other than type USER_OBJ, OTHER_OBJ, and unauthenticated. This
creation or modification is done after all other modifications to the ACL are performed.
The new mask is set even if it grants permissions previously masked out. It is
recommended that you use this option only if not specifying it results in an error. This
option is usedful only for objects that support the MASK_OBJ type and are required to
recalculate a new mask after they are modified.

If a modify operation creates a mask that unintentionally adds permissions to an existing
ACL entry, the modify causing the mask recalculation will abort with an error unless you
specify either the CALCULATE_MASK_IGNORE_ERRORS or
DONT_CALCULATE_MASK option.

PURGE_MASK_PERMS
Purges all masked permissions (before any other modifications are made). This option is
useful only for ACLs that contain an entry of type MASK_OBJ. Use it to prevent
unintentionally granting permissions to an existing entry when a new mask is calculated
as a result of adding or modifying an ACL entry.

If an update operation creates a MASK_OBJ that unintentionally adds permissions to an existing
ACL entry, the modify causing the MASK_OBJ recalculation will abort with an error unless you
specify either the CALCULATE_MASK_IGNORE_ERRORS or DONT_CALCULATE_MASK
option.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-75
Rev. 0

2.2. Data Definitions

This section describes key internal data definitions and all externally used data definitions which are
provided by this subsystem. A data definition may be represented by constructs such as data structures
and constants. For each data definition, a description, format (including parameter descriptions), and
clients which access the data definition are provided.

Data definitions used that are defined by other subsystems are:

• gss_token_t in security subsystem

• hpssoid_t in infrastructure subsystem

• hpss_object_handle_t in DCE subsystem

• hpss_server_attrib_t in storage system management

2.2.1. Access Control List Conformant Array - ns_ACLConfArray_t

Description

The ns_ACLConfArray_t is a structure that describes an ACL conformant array. Conformant arrays are
used to transport ACL entries to and from the Name Server. The number of entries to be moved is placed
in the Length field of the conformant array. The caller must allocate the space needed to hold the ACL
entries that are put into the conformant array.

Format

The ns_ACLConfArray_t structure has the following format:

typedef struct {
signed32 Length;
[size_is(Length)] ns_ACLEntry_t ACLEntry[*];

} ns_ACLConfArray_t;

Length

Identifies the number of ACL entries to be moved.

ACLEntry

Identifies an ACL entry.

Clients

chacl, Client APIs, insif, loadhpssfs, lsacl, nsclientlib

2.2.2. Access Control List Entry - ns_ACLEntry_t

Description

The ns_ACLEntry_t is a 12 byte structure that describes an ACL entry. Each entry contains information
such as the type of entry (i.e., for a group or individual user), the identity and location of the user or group
and the permissions that are allowed.

Format

The ns_ACLEntry_t structure has the following format:

typedef struct {
unsigned char EntryType;
unsigned char Perms;

Chapter 2: Name Server Functions

2-76 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

unsigned16 ExpirationDate;
unsigned32 EntryId;
unsigned32 Location;

} ns_ACLEntry_t;

EntryType

Identifies the type of the EntryId field. These correspond to the POSIX ACL tag types.

Perms

Specifies the permissions or access rights.

ExpirationDate

Currently not used.

EntryId

Specifies an identifier (usually a UID or GID).

Location

Identifies the DCE cell identifier to be associated with EntryId. A value of zero on input specifies the local
DCE cell.

Clients

chacl, Client APIs, dumphpssfs, insif, lsacl, nsclientlib, nsde.

2.2.3. Attribute Bit Map - ns_AttrBits_t

Description

This structure is a bit vector (0 origin array of bits). It is used to indicate which fields in a supplied attribute
structure are to be used to update an object’s metadata fields and which attributes are to be returned.

Format

The ns_AttrsBits structure has the following format:

typedef u_signed64 ns_AttrBits_t;

ns_AttrBits fields:

ATTRINDEX_ACCOUNT
ATTRINDEX_ACL_OPTIONS
ATTRINDEX_BIT_FILE_ID
ATTRINDEX_CLASS_OF_SERVICE
ATTRINDEX_COMMENT
ATTRINDEX_COMPOSITE_PERMS
ATTRINDEX_DM_HANDLE
ATTRINDEX_DM_HANDLE_LENGTH
ATTRINDEX_ENTRY_COUNT
ATTRINDEX FAMILY_ID
ATTRINDEX_FILESET_HANDLE
ATTRINDEX_FILESET_ID
ATTRINDEX_FILESET_ROOT_RSN
ATTRINDEX_FILESET_STATE_FLAGS
ATTRINDEX_FILESET_TYPE
ATTRINDEX_FILE_SIZE
ATTRINDEX_FLAGS
ATTRINDEX_GATEWAY_UUID
ATTRINDEX_GID

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-77
Rev. 0

ATTRINDEX_GROUP_PERMS
ATTRINDEX_LINK_COUNT
ATTRINDEX_LOCATION
ATTRINDEX_MAC_SEC_LABEL
ATTRINDEX_OTHER_PERMS
ATTRINDEX_SET_GID_ON_EXE
ATTRINDEX_SET_STICKY_BIT
ATTRINDEX_SET_UID_ON_EXE
ATTRINDEX_TIME_LAST_READ
ATTRINDEX_TIME_LAST_WRITTEN
ATTRINDEX_TIME_OF_METADATA_UPDATE
ATTRINDEX_TYPE
ATTRINDEX_UID
ATTRINDEX_USER_PERMS

MAX_ATTR_INDEX Number of attributes defined - 1.
Clients

Client APIs, insif, loadhpssdmid, loadhpsssfs2.2.3.1. Name Server Attribute Structure - ns_Attrs_t

Description

The ns_Attrs_t is a structure containing fields for the various attributes (metadata) that the Name Server
maintains for an object.

Format

The Name Server attributes structure has the following format:

typedef struct {
unsigned32 Account;
unsigned32 ACLOptions;
hpssiod_t BitFileId;
unsigned32 ClassOfService;
unsigned char Comment[NS_MAX_COMMENT_LENGTH];
unsigned32 CompositePerms;
byte DMHandle[MAX_DMEPI_HANDLE_SIZE];
unsigned32 DMHandleLength;
unsigned32 EntryCount;
unsigned32 FamilyId;
ns_ObjHandle_t FilesetHandle;
u_signed64 FilesetId;
unsigned32 FilesetRootRSN;
unsigned32 FilesetStateFlags;
unsigned32 FilesetType;

u_signed64 FileSize;
unsigned32 Flags;
uuid_t GatewayUUID;
unsigned32 GID;
unsigned32 GroupPerms;
unsigned32 LinkCount;
unsigned32 Location;
unsigned32 MACSecLabel;
unsigned32 OtherPerms;
unsigned32 SetGIDOnExe;
unsigned32 SetStickyBit;
unsigned32 SetUIDOnExe;
timestamp_sec_t TimeLastRead;
timestamp_sec_t TimeLastWritten;
timestamp_sec_t TimeOfMetadataUpdate;
unsigned32 Type;
unsigned32 UID;
unsigned32 UserPerms;

} ns_Attrs_t;

Chapter 2: Name Server Functions

2-78 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Account

Specifies opaque accounting information.

ACLOptions

Specifies the Access Control List options used with the ns_UpdateACL API.

BitFileId

Specifies the Bit file identifier.

ClassOfService

Specifies the class of service of a file object.

Comment

Specifies the uninterpreted client supplied ASCII text.

CompositePerms

Specifies the permission to an object after all ACLs have been examined and applied.

DMHandle

A handle that “points” back to a DMAP managed object. This field is opaque data to the Name Server.

DMHandleLength

The byte length of the DMHandle.

EntryCount

A read-only field which contains the number of entries contained in a directory. If the object is not a
directory, the value is not defined.

FamilyId

Identifies the fileset FamilyId when used in operations involving filesets.

FilesetHandle

A Name Server object handle used to point to the root node of a fileset.

FilesetId

The Fileset Id that uniquely identifies the fileset an object belongs to

FilesetRootRSN

A read-only field which contains the Relative Sequence Number of the root node of this fileset.

FilesetStateFlags

This field contains flag bits indicating the state of the fileset. The following constants define the possible
states:

NS_FS_STATE_READ If this bit is on reading is permitted.

NS_FS_STATE_WRITE If this bit is on writing is permitted.

NS_FS_STATE_DESTROYED If this bit is on the fileset has been destroyed. Neither
reading nor writing will be permitted.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-79
Rev. 0

NS_FS_STATE_READ_WRITE This is a comination of READ and WRITE.

NS_FS_STATE_COMBINED This is all of the above bits combined.

FilesetType

The type of the fileset the attributes are for. This is a read-only field. The following constants define the
fileset types:

NS_FS_TYPE_HPSS_ONLY This fileset is a native HPSS only fileset.

NS_FS_TYPE_ARCHIVED This fileset is a backup copy of some other fileset.

NS_FS_TYPE_DFS_ONLY This fileset is native to some other file system such as
DFS.

NS_FS_TYPE_MIRRORED This fileset is a mirrored copy of some other fileset such
as a DFS fileset.

FileSize

Specifies the byte size of a file object.

Flags
A bit vector which contains information that can be expressed in boolean form. The following constants
define the bits in this field:

NS_ATTRS_FLAGS_EXTENDED_ACLS

 This bit is set to 1 if the object has extended ACL entries.
Extended ACL entries are all entries other than user_obj,
group_obj, and other_obj.

GatewayUUID

The UUID of the DMAP Gateway that manages this object

GID

Specifies the principal group identifier.

GroupPerms

Specifies the permissions granted to group members.

LinkCount

Specifies the number of hard links to a file object.

Location

Specifies the DCE cell identifier.

MACSecLabel

Specifies the Mandatory Access Control Security Label.

OtherPerms

Specifies the permissions granted to ‘other’ clients.

SetGIDOnExe

Chapter 2: Name Server Functions

2-80 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

For file objects:

0 = do not set GID to owner.

1 = set GID to owner.

SetStickyBit

For file objects:

0 = do not set the sticky bit.

1 = set the sticky bit.

SetUIDonExe

For file objects:

0 = do not set UID to owner.

1= set UID to owner.

TimeLastRead

Specifies the last time the object was accessed.

TimeLastWritten

Specifies the last time the object was updated.

TimeOfMetadataUpdate

Specifies the last time the metadata was updated.

Type

Specifies the ‘type’ of the object: file, directory, junction, symbolic link, or hard link.

UID

Specifies the User Identifier of the object’s owner.

UserPerms

Specifies the permissions granted to the owner of the object.

Clients

chacl, Client APIs, dumphpssfs, insif, loadhpssfs, nsclientlib

2.2.4. Name Server Directory Entry - ns_DirEntry_t

Description

The ns_DirEntry_t is a structure containing information about a directory object, such as its name, object
handle and sequence index within the directory (cookie).

Format
typedef struct DirEntryTag{

ns_ObjHandle_t ObjHandle;
unsigned char Name[HPSS_MAX_FILE_NAME];
unsigned32 ObjOffset;
struct DirEntryTag *Next;
ns_Attrs_t Attrs;

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-81
Rev. 0

} ns_DirEntry_t;

HPSS_MAX_FILE_NAME is defined as 256.

ObjHandle

Specifies the object handle associated with the directory entry.

Name

Specifies the name of the directory entry.

ObjOffset

Specifies the starting location in the directory (continue cookie) from which to return a list of directory
entries..

Next

Points to the next directory entry.

Attrs

Specifies the attributes of the directory entry.

Clients

Client APIs, dumphpssfs, insif, nsclientlib

2.2.5. Name Server Fileset Bit Map - ns_FilesetAttrBits_t

Description

This section describes a bit vector (0 origin array of bits) which is used to indicate which fields in the
supplied ns_FilesetAttrs_t structure are to be used to update an object’s metadata fields and/or which
fields are to be returned.

Format

The FilesetAttrBits structure has the following format:

typedef u_signed64 ns_FilesetAttrBits_t;

FilesetAttrBits fields:

NS_FS_ATTRINDEX_REGISTER_BIT_MAP
NS_FS_ATTRINDEX_CLASS_OF_SERVICE
NS_FS_ATTRINDEX_FAMILY_ID
NS_FS_ATTRINDEX_FILESET_HANDLE
NS_FS_ATTRINDEX_FILESET_ID
NS_FS_ATTRINDEX_FILESET_NAME
NS_FS_ATTRINDEX_FILESET_TYPE
NS_FS_ATTRINDEX_GATEWAY_UUID
NS_FS_ATTRINDEX_STATE_FLAGS
NS_FS_ATTRINDEX_SUB_SYSTEM_ID
NS_FS_ATTRINDEX_USER_DATA
NS_FS_ATTRINDEX_DIRECTORY_COUNT
NS_FS_ATTRINDEX_FILE_COUNT
NS_FS_ATTRINDEX_HARD_LINK_COUNT
NS_FS_ATTRINDEX_JUNCTION_COUNT
NS_FS_ATTRINDEX_SYM_LINK_COUNT

NS_FS_MIN_ATTR_INDEX Zero.
NS_FS_MAX_ATTR_INDEX Number of attributes defined – 1

Clients

Chapter 2: Name Server Functions

2-82 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

archivedel, archivelist, archiverec, Client APIs, crtjunction, dumphpssfs, insif, loadhpssfs,
lsfilesets, lsvol, nsclientlib, SSM

2.2.6. Name Server Fileset Attrs structure - ns_FilesetAttrs_t

Description

The ns_FilesetAttrs_t structure is used when creating, updating, or querying a fileset.

Format
typedef struct
{

u_signed64 RegisterBitMap;
unsigned32 ClassOfService;
unsigned32 FamilyId;
ns_ObjHandle_t FilesetHandle;
u_signed64 FilesetId;
unsigned char FilesetName[NS_FS_MAX_FS_NAME_LENGTH];
unsigned32 FilesetType;
uuid_t GatewayUUID;
unsigned32 StateFlags;
unsigned32 SubSystemId;
byte UserData[NS_FS_MAX_USER_DATA];
signed32 DirectoryCount;
signed32 FileCount;
signed32 HardLinkCount;
signed32 JunctionCount;
signed32 SymLinkCount;

} ns_FilesetAttrs_t;

NS_FS_MAX_FS_NAME_LENGTH is defined as 128.
NS_FS_MAX_USER_DATA is defined as 128.

RegisterBitMap

A managed object with each bit in the bit vector corresponding to a field in the record.

ClassOfService

The Class Of Service (COS) of this fileset. See the Bitfile Server for appropriate COS values.

FamilyId

The fileset family identifier. This Id is opaque to the Name Server.

FilesetHandle

A Name Server object handle which points to the root node of the fileset.

FilesetId

The fileset identifier. This Id is opaque data to the Name Server.

FilesetName

A unique client chosen name for the fileset. Typically this is a readable ASCII string.

FilesetType

The type of the fileset. The current fileset types are HPSS_Only, Archived, DFS-Only, and Mirrored.
Each of these types is DFS specific. These types can be specified with the following Name Server
constants:

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-83
Rev. 0

NS_FS_TYPE_HPSS_ONLY

NS_FS_TYPE_ARCHIVED

NS_FS_TYPE_DFS_ONLY

NS_FS_TYPE_MIRRORED

GatewayUUID

The UUID of the DMAP Gateway which manages this fileset.

StateFlags

A bit vector whose bits indicate the State of the fileset. The current fileset states are:

NS_FS_STATE_READ

NS_FS_STATE_WRITE

NS_FS_STATE_DESTROYED

NS_FS_STATE_READ_WRITE logical OR of READ and WRITE

NS_FS_STATE_COMBINED logical OR of READ, WRITE, and DESTROYED

SubSystemId

This field is not currently used.

UserData

This field is not currenlty used.

DirectoryCount

Uninterpreted data supplied by the client. This data can be ASCII, binary, or both.

FileCount

A count of the number of files in this fileset.

HardLinkCount

A count of the number of hard links in this fileset.

JunctionCount

A count of the number of junction in this fileset.

SymLinkCount

A count of the number of symbolic links in this fileset.

Clients

archivedel, archivelist, archiverec, Client APIs, crtjunction, dumphpssfs, insif, loadhpssfs,
lsfilesets, lsvol, nsclientlib, SSM

2.2.7. Name Server FilesetAttrs Conformant Array - ns_FilesetAttrsConfArray_t

Description

The ns_FilesetAttrsConfArray_t is a structure that describes a conformant array of fileset entries. Fileset
conformant arrays are used to transport fileset entries from the Name Server to a client. The number of
entries being moved is placed in the Length field of the conformant array

Format

Chapter 2: Name Server Functions

2-84 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The ns_FilesetAttrsConfArray_t structure has the following format:

typedef struct
{

signed32 Length;
[size_is(Length)] ns_FilesetAttrsEntry_t FilesetAttrsEntry[*];

} ns_FilesetAttrsConfArray_t;

Length

The number of fileset entries to be moved.

FilesetAttrsEntry

A fileset attrs entry.

Clients
Client APIs, SSM, insif, nsclientlib

2.2.8. Name Server FilesetAttrs Entry - ns_FilesetAttrsEntry_t

Description

The ns_FilesetAttrsEntry_t is a structure that describes a FilesetAttrs entry. Each entry contains
information such as the name of the fileset, the handle to the fileset root directory, the FilesetId, the type of
the fileset, the state of the fileset, and the Offset continuation cookie.

Format

The ns_FilesetAttrsEntry_t structure has the following format:

typedef struct
{

uchar Name[NS_FS_MAX_FS_NAME_LENGTH];
ns_ObjHandle_t FilesetHandle;
u_signed64 FilesetId;
unsigned32 FilesetType;
unsigned32 StateFlags;
u_signed64 Offset;

} ns_FilesetAttrsEntry_t;

NS_FS_MAX_FS_NAME_LENGTH is defined as 128.

Name

The client chosen name for the fileset.

FilesetHandle

The Name Server object handle to the fileset root directory.

FilesetId

The fileset identifier.

FilesetType

The type of the fileset. The current fileset types are HPSS-Only, Archived, DFS-Only, and Mirrored. Each
of these types is DFS specific. These types can be specified with the following Name Server constants:

NS_FS_TYPE_HPSS_ONLY

NS_FS_TYPE_ARCHIVED

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-85
Rev. 0

NS_FS_TYPE_DFS_ONLY

NS_FS_TYPE_MIRRORED

StateFlags

A bit vector whose bits indicate the State of the fileset. The current fileset states are:

NS_FS_STATE_READ

NS_FS_STATE_WRITE

NS_FS_STATE_DESTROYED

NS_FS_STATE_READ_WRITE logical OR of READ and WRITE

NS_FS_STATE_COMBINED logical OR of READ, WRITE, and DESTROYED

Offset

This offset, sometimes called the continuation cookie, is the offset to use in subsequent calls to
ns_ReadFilesetAttrs so that subsequent entries (if any) can be read.

Clients
Client APIs, SSM, insif, nsclientlib, nsde

2.2.9. Name Server Global Fileset Conformant Array - ns_GFilesetConfArray_t

Description

The ns_GFilesetConfArray_t is a structure that describes a conformant array of global fileset entries.
Global fileset conformant arrays are used to transport global fileset entries from the Name Server to a
client. The number of entries being moved is placed in the Length field of the conformant array

Format

The ns_GFilesetConfArray_t structure has the following format:

typedef struct
{

signed32 Length;
[size_is(Length)] ns_GlobalFilesetEntry_t GlobalFilesetEntry[*];

} ns_GFilesetConfArray_t;

Length

The number of global fileset entries to be moved.

GlobalFilesetEntry

A global fileset entry.

Clients
Client APIs, SSM, insif, nsclientlib

2.2.10. Name Server GlobalFileset Entry - ns_GlobalFilesetEntry_t

Description

The ns_GlobalFilesetEntry_t is a structure that describes a Global Fileset entry. Each entry contains
information such as the name of the fileset, the FilesetId, the Gateway UUID, the Name Server UUID, and
the Offset continuation cookie.

Format

Chapter 2: Name Server Functions

2-86 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The ns_GlobalFilesetEntry_t structure has the following format:

typedef struct
{

u_signed64 FilesetId;
uchar FilesetName[NS_FS_MAX_FS_NAME_LENGTH];
uuid_t GatewayUUID;
uuid_t NameServerUUID;
u_signed64 Offset;

} ns_GlobalFilesetEntry_t;

NS_FS_MAX_FS_NAME_LENGTH is defined as 128.

FilesetId

The fileset identifier.

FilesetName

The name of the fileset.

GatewayUUID

The UUID of the Gateway that manages this fileset. Note that this field will be empty (zero) for
HPSS_ONLY filesets.

NameServerUUID

The UUID of the Name Server that manages this fileset.

Offset

This offset, sometimes called the continuation cookie, is the offset to use in subsequent calls to
ns_ReadGlobalFilesest so that subsequent entries (if any) can be read.

Clients
Client APIs, SSM, insif, nsclientlib, nsds

2.2.11. Name Server Junction Path Conformant Array - ns_JunctionPathConfArray_t

Description

The ns_JunctionPathConfArray_t is a structure that describes a conformant array of Junction path entries.
Junction path conformant arrays are used to transport Junction Path entries from the Name Server to a
client. The number of entries being moved is placed in the Length field of the conformant array

Format

The ns_JunctionPathConfArray_t structure has the following format:

typedef struct
{

signed32 Length;
[size_is(Length)] ns_JunctionPathEntry_t JunctionPathEntry[*];

} ns_JunctionPathConfArray_t;

Length

The number of Junction path entries to be moved.

JunctionPathEntry

A Junction path entry.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-87
Rev. 0

Clients
insif, nsclientlib

2.2.12. Name Server Junction Path Entry - ns_JunctionPathEntry_t

Description

The ns_JunctionPathEntry_t is a structure that describes a Junction path entry. Each entry contains
information such as the path name to the Junction, the FilesetHandle, the Junction handle, and the Offset
continuation cookie.

Format

The ns_JunctionPathEntry_t structure has the following format:

typedef struct
{

ns_ObjHandle_t FilesetHandle;
uchar JunctionPathName[HPSS_MAX_PATH_NAME];
ns_ObjHandle_t JunctionHandle;
u_signed64 Offset;

} ns_JunctionPathEntry_t;

FilesetHandle

A Name Server object handle to the fileset that contains this Junction. The JunctionPathName is relative
to this object handle.

JunctionPathName

The path name to the Junction relative to the FilesetHandle.

JunctionHandle

The object handle to this Junction.

Offset

This offset, sometimes called the continuation cookie, is the offset to use in subsequent calls to
ns_ReadJunctionPathNames so that subsequent entries (if any) can be read.

Clients
insif, nsclientlib

2.2.13. Name Server Object Handle - ns_ObjHandle_t

Description

The ns_ObjHandle_t is a 32 byte structure containing information that allows the name server to identify
the SFS record where the metadata for the object is stored.

Format

The Name Server object handle structure has the following format:

typedef struct {
unsigned32 ObjId;
unsigned32 FileId;
unsigned char Flags;
unsigned char Pad1;
unsigned char Pad2;
unsigned char Pad3;

Chapter 2: Name Server Functions

2-88 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

unsigned16 Generation;
unsigned char Type;
unsigned char Version;
uuid_t NameServerUUID;

} ns_ObjHandle_t;

ObjId

Specifies a unique Name Server object identifier. (The Relative Sequence Number (RSN) of the SFS
record containing the metadata for the object.).

FileId

If the Type field specifies a hard link this is the RSN of the SFS record containing the metadata for the
original file. For all other Types this field is equal to the ObjId.

Flags

This is field a bitvector whose bits convey additional information about the object handle. The defined bit
postions for the Flags field are:

NS_OH_FLAG_FILESET_ROOT

Pad1

Reserved for future use.

Pad2

Reserved for future use.

Pad3

Reserved for future use.

Generation

Specifies a random number used to detect stale object handles.

Type

Specifies the ‘type’ of the object: file, directory, symbolic link, junction, or hard link.

Version

Specifies the object handle version number.

NameServerUUID

Specifies the UUID of the Name Server that issued this object handle.

Clients

archivedel, archivelist, archiverec, crtjunction, Client APIs, dumphpssfs, insif, loadhpssdmid,
loadhpssfs, lsvol, nsclientlib, nsde, recover_segs, SSM

2.2.14. Name Server Return Structure - ns_RemaingPath_t

Description

Upon return from many of the Name Server APIs the ns_RemainingPath_t structure may contain
information about where future path resolution may begin. If while parsing a PathName a junction point is
encountered, the remainder of the PathName (the portion not yet processed) and the object handle to the
root node of the fileset are returned in an ns_RemainingPath_t structure.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-89
Rev. 0

Format

The ns_RemainingPath_t structure has the following format:

typedef struct
{

uchar RemainingPath[HPSS_MAX_PATH_NAME];
ns_ObjHandle_t DirHandle;

} ns_RemainingPath_t;

RemainingPath

The remainder of the PathName (the portion not yet processed)

DirHandle

The Name Server object handle found in the junction point that points to the next Directory.

Client
Client APIs, SSM, insif, nsclientlib

2.2.15. Name Server Configuration - ns_SpecificConfig_t

Description

The ns_SpecificConfig_t structure contains the configuration information for the Name Server.

Format

The ns_SpecificConfig_t structure has the following format:

typedef struct {
u_signed64 RegisterBitmap;
uuid_t NSId;
uuid_t BFSId;
unsigned char NSACLFileName[HPSS_MAX_DCE_NAME];
unsigned char NSFilesetAttrsFileName[HPSS_MAX_DCE_NAME];
unsigned char NSGlobalFilesetsFileName[HPSS_MAX_DCE_NAME];
unsigned char NSObjFileName[HPSS_MAX_DCE_NAME];
unsigned char NSTextFileName[HPSS_MAX_DCE_NAME];
unsigned char RootFilesetName[NS_FS_MAX_FS_NAME_LENGTH];
u_signed64 RootFilesetId;
unsigned32 MaxPathComponents;
unsigned32 MaxByteSizeOfBuffer;
unsigned32 FileDefaultPerms;
unsigned32 DirDefaultPerms;
unsigned32 RootIsGod;
unsigned32 RootsUID;
unsigned32 WarningThreshold;
unsigned32 CriticalThreshold;
unsigned32 WarningThresholdExceeded;
unsigned32 CriticalThresholdExceeded;
u_signed64 MaxRecords;
u_signed64 NumRecordsUsed;
u_signed64 NumRecordsAvailable;
signed32 NumFreeRecords;
signed32 DirectoryCount;
signed32 FileCount;
signed32 FilesetCount;
signed32 HardLinkCount;
signed32 JunctionCount;
signed32 SymLinkCount;

} ns_SpecificConfig_t;

Chapter 2: Name Server Functions

2-90 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

RegisterBitmap

A bitmap having a bit location corresponding to each field in this record.

NSId

The Name Server’s UUID.

BFSId

The UUID of the Bitfile Server.

NSACLFileName

The path name to the SFS file where overflow ACL entries from Name Server objects are stored.

NSFilesetAttrsFileName

The path name to the SFS file where the Name Server’s fileset attrs metadata is stored.

NSGlobalFilesetsFileName

The path name to the SFS file where the global fileset metadata is stored.

NSObjFileName

The path name to the SFS file where metadata for Name Server objects are stored.

NSTextFileName

The path name to the SFS file where text overflow data from Name Server objects are stored.

RootFilesetName

The name to be assigned to the Name Server’s root fileset. This is the HPSS_ONLY fileset that contains
the ‘/’ directory.

RootFilesetId

The fileset Id to be assigned to the Name Server’s root fileset. This is the HPSS_ONLY fileset that
contains the ‘/’ directory.

MaxPathComponents

The maximum number of path name components that the Name Server will parse.

MaxByteSizeOfBuffer

The maximum size of the buffer (in bytes) that the Name Server will use to return a list of directory entries
from the ns_ReadDir function. If this buffer becomes too large the DCE RPC marshaling routines
experience stack overflows.

FileDefaultPerms

The permissions that will be given to any newly inserted files that do not have permissions specified in the
attribute structure.

DirDefaultPerms

The permissions that will be given to any newly created directories that do not have permissions specified
in the attribute structure.

RootIsGod

Determines if root access has omnipotent power. If the value is 1, then root does have omnipotent power,
otherwise, root is treated as any other user.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-91
Rev. 0

RootsUID

The root user’s UID.

WarningThreshold

A percentage value of used space which, when exceeded in the SFS object file, will cause a notification to
be sent to the SSM.

CriticalThreshold

A percentage value of used space which, when exceeded in the SFS object file, will cause alarm
messages to be sent to the SSM.

WarningThresholdExceeded

A Boolean flag that is set to 1 when the warning threshold is exceeded.

CriticalThresholdExceeded

A Boolean flag that is set to 1 when the critical threshold is exceeded.

MaxRecords

The total number of SFS records that can be used by the Name Server to store object metadata.

NumRecordsUsed

The total number of SFS records that are currently being used in the object file.

NumRecordsAvailable

The total number of SFS records that are currently available in the object file. This value includes
NumFreeRecords.

NumFreeRecords

The total number of SFS records that have previously been used to store Name Server objects, but are
once again available to store new objects.

DirectoryCount

The number of metadata entries in the SFS object file that are for directories.

FileCount

The number of metadata entries in the SFS object file that are for files.

FilesetCount

A count of the number of filesets managed by this Name Server.

HardLinkCount

The number of metadata entries in the SFS object file that are for hard links.

JunctionCount

The number of metadata entries in the SFS object file that are for junction points.

SymLinkCount

The number of metadata entries in the SFS object file that are for symbolic links.

Clients

Name Server initialization, Storage System Manager, insif, load_cns_config, lsvol, nsclientlib,

Chapter 2: Name Server Functions

2-92 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

recover_segs

2.2.16. Name Server Statistics Structure - ns_StatisticsRec_t

Description

The Name Server maintains a global data structure which contains a variety of statistics detailing Name
Server activity. This activity covers the number of times each API is called and the number of times these
calls resulted in an error. In addition there is information about block activity and other miscellaneous
activities. This data is not preserved across Name Server restarts and can be set to zero using the
ns_Statistics API.

Format

The ns_StatisticsRec_t structure has the following format:

typedef struct
{

unsigned32 StatisticsStartTime;

unsigned32 Deletes;
unsigned32 DeleteErrors;
unsigned32 DeleteACLs;
unsigned32 DeleteACLErrors;
unsigned32 DeleteFilesets;
unsigned32 DeleteFilesetErrors;
unsigned32 GetACLs;
unsigned32 GetACLErrors;
unsigned32 GetAttrs;
unsigned32 GetAttrErrors;
unsigned32 GetFilesetAttrs;
unsigned32 GetFilesetAttrErrors;
unsigned32 GetFilesetByNameOrId;
unsigned32 GetFilesetByNameOrIdErrors;
unsigned32 GetNames;
unsigned32 GetNameErrors;
unsigned32 Inserts;
unsigned32 InsertErrors;
unsigned32 MkDirs;
unsigned32 MkDirErrors;
unsigned32 MkFilesets;
unsigned32 MkFilesetErrors;
unsigned32 MkJunctions;
unsigned32 MkJunctionErrors;
unsigned32 MkLinks;
unsigned32 MkLinkErrors;
unsigned32 MkSymLinks;
unsigned32 MkSymLinkErrors;
unsigned32 NSGetAttrs;
unsigned32 NSGetAttrErrors;
unsigned32 NSSetAttrs;
unsigned32 NSSetAttrErrors;
unsigned32 ReadDirs;
unsigned32 ReadDirErrors;
unsigned32 ReadFilesetAttrs;

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-93
Rev. 0

unsigned32 ReadFilesetAttrErrors;
unsigned32 ReadGlobalFileset;
unsigned32 ReadGlobalFilesetErrors;
unsigned32 ReadJunctionPathNames;
unsigned32 ReadJunctonPathNameErrors;
unsigned32 ReadLinks;
unsigned32 ReadLinkErrors;
unsigned32 Renames;
unsigned32 RenameErrors;
unsigned32 ServerGetAttrs;
unsigned32 ServerGetAttrErrors;
unsigned32 ServerSetAttrs;
unsigned32 ServerSetAttrErrors;
unsigned32 SetACLs;
unsigned32 SetACLErrors;
unsigned32 SetAttrs;
unsigned32 SetAttrErrors;
unsigned32 SetFilesetAttrs;
unsigned32 SetFilesetAttrErrors;
unsigned32 Statistics;
unsigned32 StatisticErrors;
unsigned32 UpdateACLs;
unsigned32 UpdateACLErrors;

unsigned32 AddedToFreeList;
unsigned32 CalledFillInFreeList;
unsigned32 AttemptedToFillFreeList;
unsigned32 FoundSomeFreeListEntries;
unsigned32 NewRecordWasInUse;
unsigned32 NewRecordInUseTooMuch;
unsigned32 UsedAnEntryFromTheFreeList;
unsigned32 AddedNewEntryToTheEnd;

unsigned32 AddedAnACLBlock;
unsigned32 DeletedAnACLBlock;
unsigned32 AddedAFilesetAttrsBlock;
unsigned32 DeletedAFilesetAttrsBlock;
unsigned32 AddedAGlobalFilesetBlock;
unsigned32 DeletedAGlobalFilesetBlock;
unsigned32 AddedATextBlock;
unsigned32 DeletedATextBlock;

unsigned32 NumFilesetCacheSlots;
unsigned32 FilesetCacheSlotsUsed;
unsigned32 RSNCacheSlotsUsed;
unsigned32 LongestFSCacheChain;
unsigned32 LongestRSNCacheChain;
unsigned32 FilesetAttrsEntryFoundInCache;
unsigned32 FilesetAttrsEntryWasNotInCache;
unsigned32 FilesetAttrsEntryWasNotInCache2;
unsigned32 DeleteFSCacheEntryCalled;
unsigned32 FSCreateAttemptWasAborted;

Chapter 2: Name Server Functions

2-94 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

unsigned32 FSUpdateAttemptWasAborted;
unsigned32 GetFilesetCacheCalled;
unsigned32 GetFSCacheByRSNCalled;
unsigned32 ReloadedTheFilesetCache;

unsigned32 AccessedAComment;
unsigned32 AccessedAFilesetAttrsRecord;
unsigned32 AccessedAGlobalFilesetRecord;
unsigned32 AddedALongName;
unsigned32 AddedAComment;

} ns_StatisticsRec_t;

StatisticsStartTime

The time in standard Unix seconds that this record was initialized (set to zero, and the StatisticsStartTime
set to the current time).

Deletes

The number of times ns_Delete has been called since StatisticsStartTime.

DeleteErrors

The number of times ns_Delete has returned an error since StatisticsStartTime.

DeleteACLs

The number of times ns_DeleteACL has been called since StatisticsStartTime.

DeleteACLErrors

The number of times ns_DeleteACL has returned an error since StatisticsStartTime.

DeleteFilesets

The number of times ns_DeleteFileset has been called since StatisticsStartTime.

DeleteFilesetErrors

The number of times ns_DeleteFileset has returned an error since StatisticsStartTime.

GetACLs

The number of times ns_GetACLs has been called since StatisticsStartTime.

GetACLErrors

The number of times ns_GetACLs has returned an error since StatisticsStartTime.

GetAttrs

The number of times ns_GetAttrs has been called since StatisticsStartTime.

GetAttrErrors

The number of times ns_GetAttrs has returned an error since StatisticsStartTime.

GetFilesetAttrs

The number of times ns_GetFilesetAttrs has been called since StatisticsStartTime.

GetFilesetAttrErrors

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-95
Rev. 0

The number of times ns_GetFilesetAttrs has returned an error since StatisticsStartTime.

GetFilesetByNameOrId

The number of times ns_GetFilesetByNameOrId has been called since StatisticsStartTime.

GetFilesetByNameOrIdErrors

The number of times ns_GetFilesetByNameOrId has returned an error since StatisticsStartTime.

GetNames

The number of times ns_GetNames has been called since StatisticsStartTime.

GetNameErrors

The number of times ns_GetNames has returned an error since StatisticsStartTime.

Inserts

The number of times ns_Inserts has been called since StatisticsStartTime.

InsertErrors

The number of times ns_Insert has returned an error since StatisticsStartTime.

MkDirs

The number of times ns_MkDir has been called since StatisticsStartTime.

MkDirErrors

The number of times ns_MkDir has returned an error since StatisticsStartTime.

MkFilesets

The number of times ns_MkFileset has been called since StatisticsStartTime.

MkFilesetErrors

The number of times ns_MkFileset has returned an error since StatisticsStartTime.

MkJunctions

The number of times ns_MkJunction has been called since StatisticsStartTime.

MkJunctionErrors

The number of times ns_MkJunction has returned an error since StatisticsStartTime.

MkLinks

The number of times ns_MkLink has been called since StatisticsStartTime.

MkLinkErrors

The number of times ns_MkLink has returned an error since StatisticsStartTime.

MkSymLinks

The number of times ns_MkSymLink has been called since StatisticsStartTime.

MkSymLinkErrors

The number of times ns_MkSymLink has returned an error since StatisticsStartTime.

NSGetAttrs

Chapter 2: Name Server Functions

2-96 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The number of times ns_NSGetAttr has been called since StatisticsStartTime.

NSGetAttrErrors

The number of times ns_NSGetAttr has returned an error since StatisticsStartTime.

NSSetAttrs

The number of times ns_NSSetAttr has been called since StatisticsStartTime.

NSSetAttrErrors

The number of times ns_NSSetAttr has returned an error since StatisticsStartTime.

ReadDirs

The number of times ns_ReadDir has been called since StatisticsStartTime.

ReadDirErrors

The number of times ns_ReadDir has returned an error since StatisticsStartTime.

ReadFilesetAttrs

The number of times ns_ReadFilesetAttrs has been called since StatisticsStartTime.

ReadFilesetAttrErrors

The number of times ns_ReadFilesetAttrs has returned an error since StatisticsStartTime.

ReadGlobalFilesets

The number of times ns_ReadGlobalFilesets has been called since StatisticsStartTime.

ReadGlobalFilesetErrors

The number of times ns_ReadGlobalFilesets has returned an error since StatisticsStartTime.

ReadJunctionPathNames

The number of times ns_ReadJunctionPathNames has been called since StatisticsStartTime.

ReadJunctionPathNameErrors

The number of times ns_ReadJunctionPathNames has returned an error since StatisticsStartTime.

ReadLinks

The number of times ns_ReadLink has been called since StatisticsStartTime.

ReadLinkErrors

The number of times ns_ReadLink has returned an error since StatisticsStartTime.

Renames

The number of times ns_Rename has been called since StatisticsStartTime.

RenameErrors

The number of times ns_Rename has returned an error since StatisticsStartTime.

ServerGetAttrs

The number of times ns_ServerGetAttr has been called since StatisticsStartTime.

ServerGetAttrErrors

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-97
Rev. 0

The number of times ns_ServerGetAttr has returned an error since StatisticsStartTime.

ServerSetAttrs

The number of times ns_ServerSetAttr has been called since StatisticsStartTime.

ServerSetAttrErrors

The number of times ns_ServerSetAttr has returned an error since StatisticsStartTime.

SetACLs

The number of times ns_SetACL has been called since StatisticsStartTime.

SetACLErrors

The number of times ns_SetACL has returned an error since StatisticsStartTime.

SetAttrs

The number of times ns_SetAttrs has been called since StatisticsStartTime.

SetAttrErrors

The number of times ns_SetAttrs has returned an error since StatisticsStartTime.

SetFilesetAttrs

The number of times ns_SetFilesetAttrs has been called since StatisticsStartTime.

SetFilesetAttrErrors

The number of times ns_SetFilesetAttrs has returned an error since StatisticsStartTime.

Statistics

The number of times ns_Statistics has been called since StatisticsStartTime.

StatisticErrors

The number of times ns_Statistics has returned an error since StatisticsStartTime.

UpdateACLs

The number of times ns_UpdateACL has been called since StatisticsStartTime.

UpdateACLErrors

The number of times ns_UpdateACL has returned an error since StatisticsStartTime.

AddedToFreeList

The number of times since StatisticsStartTime that AddToFreeList has been called.

CalledFillInFreeList

The number of times since StatisticsStartTime that FillInFreeList has been called.

AttemptedToFillFreeList

The number of times since StatisticsStartTime the the number of FreeList entires was below the threshold
and we attempted to replenish the list. This value is incremented in FillInFreeList.

FoundSomeFreeListEntries

The number of times since StatisticsStartTime that we actually found some FreeList entries in the
database when we looked for some.This value is incremented in FillInFreeList.

Chapter 2: Name Server Functions

2-98 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

NewRecordWasInUse

The number of times since StatisticsStartTime that we read in a FreeList record and discovered that it had
already been claimed by another thread. This value is incremented in NSBlkAdd.

NewRecordInUseTooMuch

The number of times since StatisticsStartTime that 5 attempts have been made to get a FreeList entry
and each time it was discovered that the record had already been claimed by some other thread. This
value is incremented in NSBlkAdd.

UsedAnEntryFromTheFreeList

The number of times since StatisticsStartTime that an attempt to get a FreeList entry was successful.
This value is incremented in NSBlkAdd.

AddedNewEntryToTheEnd

The number of times since StatisticsStartTime that we were not able to find a FreeList entry and added
the new entry to the end of the database. This value is incremented in NSBlkAdd.

AddedAnACLBlock

The number of times since StatisticsStartTime that an ACL record has been added to the ACL Extensions
file. This value is incremented in NSBlkAdd.

DeletedAnACLBlock

The number of times since StatisticsStartTime that and ACL record has been deleted. This value is
incremented in NSBlkDelete.

AddedAFilesetAttrsBlock

The number of times since StatisticsStartTime that a FilesetAttrs record has been added. This value is
incremented in NSBlkAdd.

DeletedAFilesetAttrsBlock

The number of times since StatisticsStartTime that a FilesetAttrs record has been deleted. This value is
incremented in NSBlkDelete.

AddedAGlobalFilesetBlock

The number of times since StatisticsStartTime that a Global Fileset record has been added. This value is
incremented in NSBlkAdd.

DeletedAGlobalFilesetBlock

The number of times since StatisticsStartTime that a Global Fileset record has been deleted. This value is
incremented in NSBlkDelete.

AddedATextBlock

The number of times since StatisticsStartTime that a Text record has been added to the Text Extensions
file. This value is incremented in NSBlkAdd.

DeletedATextBlock

The number of times since StatisticsStartTime that a Text record has been deleted. This value is
incremented in NSBlkDelete.

NumFilesetCacheSlots

The total number of ‘slots’ or entries in the Name Server’s in-memory fileset hash table.

Chapter 2: Name Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 2-99
Rev. 0

FilesetCacheSlotsUsed

The number of slots in use in the Name Server’s in-memory fileset hash table. These are the slots that
have been hashed by fileset identifier.

RSNCacheSlotsUsed

The number of slots in use in the Name Server’s in-memory fileset hash table. These are the slots that
have been hashed by Relative Sequence Number.

LongestFSCacheChain

Fileset entries are ‘chained’ in link lists from the fileset hash table. This is the number of entries in the
longest of these chains that is hashed by fileset identifier.

LongestRSNCacheChain

Fileset entries are ‘chained’ in link lists from the fileset hash table. This is the number of entries in the
longest of these chains that is hashed by relative sequence number.

FilesetAttrsEntryFoundInCache

A fileset entry was requested and this FilesetAttrs entry was found in the Name Server’s cache.

FilesetAttrsEntryWasNotInCache

A fileset entry was requested, but this FilesetAtttrs entry was not found in the Name Server’s cache.

FilesetAttrsEntryWasNotInCache2

A fileset entry was requested, and this FilesetAtttrs entry was found in the Name Server’s cache.
However when later trying to find it again so that a a copy could be made, the Name Server could not find
it.

DeleteFSCacheEntryCalled

The number of times since StatisticsStartTime that DeleteFSCacheEntry has been called.

FSCreateAttemptWasAborted

The number of times since StatisticsStartTime that a Fileset create attempt was aborted.

FSUpdateAttemptWasAborted

The number of times since StatisticsStartTime that a Fileset update attempt was aborted.

GetFilesetCacheCalled

The number of times since StatisticsStartTime that the function GetFilesetCache was called.

GetFSCacheByRSNCalled

The number of times since StatisticsStartTime that the function GetFilesetCacheByRSN was called.

ReloadedTheFilesetCache

The number of times since StatisticsStartTime that the Fileset cache has been reloaded.

AccessedAComment

The number of times since StatisticsStartTime that a Comment Extension Text record has been accessed
(read). This value is incremented in NSBlkGet.

AccessedAFilesetAttrsRecord

The number of times since StatisticsStartTime that a FilesetAttrs record has been accessed (read).

Chapter 2: Name Server Functions

2-100 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

AccessedAGlobalFilesesRecord

The number of times since StatisticsStartTime that a Global Fileset record has been accessed (read).

AddedALongName

The number of times since StatisticsStartTime that a Name Extension Text record has been added to the
Text Extensons file. This value is incremented in NSBlkAdd.

AddedAComment

The number of times since StatisticsStartTime that a Comment Extenson Text record has been added to
the Text Extensions file. This value is incremented in NSBlkAdd.

Clients

Client APIs, SSM, insif

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-1
Rev. 0

3. Bitfile Server Functions

This chapter specifies the Bitfile Server programming interface. Specifically, the following information is
provided:

Application Programming Interfaces (APIs)

Data Definitions

3.1. API Functions

This section describes all APIs which are provided for use by another HPSS subsystem or by a client
external to HPSS. The API interface specification includes the following information:

Name

Syntax

Description

Parameters

Return Values

Error Conditions

Related Information

Clients

Notes

Chapter 3: Bitfile Server Functions

3-2 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.1. bfs_BitfileGetAttrs

Purpose
Get attributes for a bitfile that is not required to be open.

Syntax
#include "bfs_interface.h"

signed32
bfs_BitfileGetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
hpssoid_t *BfIdPtr, /* IN */
reqid_t ReqId, /* IN */
bf_attrib_t *BfAttribPtr, /* OUT */
gss_token_t Ta, /* IN */
trpc_status_t *RPCError); /* OUT */

Description
The bitfile attributes are returned. Some attributes, such as current position, are not valid on this
call.

Parameters
Binding Encina remote procedure call binding handle.

CNHPtr->hpss_connect_handle_t
Handle that defines the connection context for this user.

BfIdPtr->hpssoid_t The unique unforgeable identifier of the bitfile.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for
example to link log messages from various subsystems to the
original client request.

BfAttribPtr->bf_attrib Bitfile attributes.

Ta Kerberos style authorization ticket.

RPCError->trpc_status_t RPC exception status code for a non-transactional RPC.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EINVAL Format of the bitfile id pointed to by BfIdPtr is not valid.

HPSS_EPERM Ticket passed from the name serer is not valid. Note that any
user with a valid ticket can get the attributes of a bitfile. No
specific permissions are required.

HPSS_EBADCONN Connection handle is invalid.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-3
Rev. 0

HPSS_EMDATA SFS error detected in processing BFS metadata.

HPSS_ENOENT Bitfile which is target of the request does not exist.

HPSS_ENOMEM Memory allocation error occurred during processing of request.

HPSS_ESYSTEM Severe system error occurred during processing of request.

See also
bfs_BitfileSetAttrs, bfs_BitfileOpenGetAttrs, bfs_BitfileOpenSetAttrs.

Clients
Client API, Storage System Manager.

Notes
None.

Chapter 3: Bitfile Server Functions

3-4 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.2. bfs_BitfileGetXAttrs

Purpose
Get extended attributes for a bitfile

Syntax
#include bfs_interface.h
[nontransactional]
signed32
bfs_BitfileGetXAttrs (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t* CnhPtr, /* IN */
hpssoid_t* BfIdPtr /* IN */
reqid_t ReqId /* IN */
unsigned32 Flags /* IN */
unsigned32 StorageLevel /* IN */
bf_xattrib_t* BfAttribPtr /* IN */
gss_token_t Ta /* IN */
trpc_status_t* RPCError); /* OUT */

Description
The bitfile information is queried for standard attributes and these are returned. In addition, the
storage information associated with the bitfile is examined and information relating to the
placement of the file in the hierarchy is returned to the client. This includes information as to
whether the file is stored on tape or disk and, if the file is on tape, relative position of the file on the
tape media. The caller can also ask only that optimization paramaters be returned. The
parmaters returned in all cases reflect things such as the staging option associated with the class
of service of the file being queried.

Parameters
Binding The Encina remote procedure call binding handle.

CnhPtr->hpss_connect_handle_t
Handle that defines the connection context for this user.

BfIdPtr->bitfile The operation is to take place on.

ReqId The unique request id associated with the request.

Flags Specifies options of the GetXAttrs call. Valid options are:

BFS_GETATTRS_STATS_FOR_LEVEL 0x00000002 - get
storage attributes associated with the storage level passed as a
paramater in the call.

BFS_GETATTRS_STATS_FOR_1ST_LEVEL 0x00000004 - get
storage attributes assocaited with the bitfile associated with the
first storage level in the hierarchy that contains bitfile data.

BFS_GETATTRS_STATS_OPTIMIZE 0x00000008 - get
optimization paramaters only. The additional paramaters
returned are optimum access size and stripe width.

StorageLevel Indicates the level in the hierarchy for which storage attributes
should be returned. This only applies if ghe
BFS_GETATTRS_STATS_FOR_LEVEL call is made.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-5
Rev. 0

BfAttribPtr->returned Attributes.

Ta The Kerberos style authorization ticket.

RPCError->trpc_status_t The RPC exception status code for a non-transactional RPC.

Return Values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error Conditions
HPSS_EBADCONN Connection handle is invalid.

HPSS_EPERM Ticket passed from the name serer is not valid. Note that any
user with a valid ticket can get the attributes of a bitfile. No
specific permissions are required.

HPSS_ENOENT Bitfile which is target of the request does not exist.

HPSS_EMDATA SFS error detected in processing BFS metadata.

HPSS_EINVAL Format of the bitfile id pointed to by BfIdPtr is not valid.

HPSS_ESYSTEM Severe system error occurred during processing of request.

See Also
bfs_BitfileGetAttrs

Clients
Client API

Notes
None.

Chapter 3: Bitfile Server Functions

3-6 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.3. bfs_BitfileOpenGetAttrs

Purpose
Get all attributes for the open bitfile.

Syntax
#include "bfs_interface.h"

signed32
bfs_BitfileOpenGetAttrs (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
hpss_object_handle_t *BfhPtr, /* IN */
reqid_t ReqId, /* IN */
bf_attrib_t *BfAttribPtr, /* OUT */
trpc_status_t *RPCError); /* OUT */

Description
The bitfile attributes are returned, including position of the open bitfile.

Parameters
Binding Encina remote procedure call binding handle.

CNHPtr->hpss_connect_handle_t
Handle that defines the connection context for this user.

BfhPtr->hpss_object_handle_t Bitfile handle and contains the information necessary for the
Bitfile Server to find the cached metadata for the bitfile.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for
example to link log messages from various subsystems to the
original client request.

BfAttribPtr->bf_attrib Bitfile attributes.

RPCError->trpc_status_t RPC exception status code for a non-transactional RPC.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EBADCONN Connection handle is invalid.

HPSS_ESYSTEM Severe system error occurred during processing of request.

HPSS_EBADBFHANDLE The bitfile handle pointed to by BfhPtr does not refer to a
currently open bitfile.

See also
bfs_BitfileOpenSetAttrs, bfs_BitfileGetAttrs, bfs_BitfileSetAttrs.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-7
Rev. 0

Clients
Client API, Storage System Manager.

Notes
None.

Chapter 3: Bitfile Server Functions

3-8 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.4. bfs_BitfileOpenSetAttrs

Purpose
Set the specified attributes in the bitfile descriptor of an open bitfile.

Syntax

#include "bfs_interface.h"

signed32
bfs_BitfileOpenSetAttrs (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
hpss_object_handle_t *BfhPtr, /* IN */
reqid_t ReqId, /* IN */
u_signed64 OwnerRecFlags, /* IN */
u_signed64 InSelectBitmap, /* IN */
u_signed64 *OutselectBitmap, /* OUT */
bf_attrib_t *InBfAttribPtr, /* IN */
bf_attrib_t *OutBfAttribPtr, /* OUT */
trpc_status_t *RPCError); /* OUT */

Description
The attributes specified in the attribute structure that can be rewritten replace the current values.

Parameters
Binding Encina remote procedure call binding handle.

CNHPtr->hpss_connect_handle_t
Handle that defines the connection context for this user.

BfhPtr->hpss_object_handle_t Bitfile handle and contains the information necessary for the
Bitfile Server to find the cached metadata for the bitfile.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for
example to link log messages from various subsystems to the
original client request.

OwnerRecFlags Used to set reverse map fields in the owner record.

InSelectBitmap Specifies the attribute fields that are to be changed. The bitfile
attributes flags are specified under Data Definitions in the
bf_attrib_t structure.

OutSelectBitmap Indicates the attribute fields that were changed. The bitfile
attributes flags are specified under Data Definitions in the
bf_attrib_t structure. Setable attributes are as follows:

CURRENT_POSITION
DATA_LEN
CREATE_TIME
MODIFY_TIME
WRITE_TIME
READ_TIME

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-9
Rev. 0

OWNER_REC
COS_ID
ACCT
REGISTER_BITMAP
CONSISTENCY_FLAGS

In addition a PREALLOC flag can be set to indicate that data
should be allocated based on the data length paramater passed
in.

InBfAttribPtr ->bf_attrib_t Bitfile attribute values to be used to set the new attributes. See
the bf_attrib_t structure under Data Definitions for a list of the
attributes that can be changed.

OutBfAttribPtr ->bf_attrib_t Newly updated attribute values. See the bf_attrib_t structure
under Data Definitions for a list of the attributes that can be
changed.

RPCError->trpc_status_t RPC exception status code for a non-transactional RPC.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EINVAL Attempt to set the Class of Service to a value that does not refer
to a currently defined Class of Service.

HPSS_EBADCONN Connection handle is invalid.

HPSS_ESYSTEM Severe system error occurred during processing of request.

HPSS_ENOSPACE Attempt to add more owner rec entries than supported.

HPSS_EBUSY A request is already active on this bitfile handle.

HPSS_EBADBFHANDLE The bitfile handle pointed to by BfhPtr does not refer to a
currently open bitfile.

See also
bfs_BitfileSetAttrs, bfs_BitfileOpenGetAttrs, bfs_BitfileGetAttrs.

Clients
Client API, Storage System Manager.

Notes
There is no user-defined metadata. LinkCount cannot be set through a
bfs_Bitfile(Open)SetAttrs call. It can only be set by link and unlink calls. On one
bfs_Bitfile(Open)SetAttrs call, reverse maps (OwnerRec) can be either added or deleted. Both
cannot be accomplished on the same call.

Chapter 3: Bitfile Server Functions

3-10 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.5. bfs_BitfileSetAttrs

Purpose
Set the specified attributes in the bitfile descriptor of a bitfile that is not required to be open.

Syntax

#include "bfs_interface.h"

signed32
bfs_BitfileSetAttrs (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
hpssoid_t *BfIdPtr, /* IN */
reqid_t ReqId, /* IN */
u_signed64 OwnerRecFlags, /* IN */
u_signed64 InSelectBitmap, /* IN */
u_signed64 *OutSelectBitmap, /* IN */
bf_attrib_t *InBfAttribPtr, /* IN */
bf_attrib_t *OutBfAttribPtr, /* OUT */
gss_token_t Ta, /* IN */
trpc_status_t *RPCError); /* OUT */

Description
The attributes specified in the attribute structure that can be rewritten replace the current values.

Parameters
Binding Encina remote procedure call binding handle.

CNHPtr->hpss_connect_handle_t
Handle that defines the connection context for this user.

BfIdPtr->hpssoid_t Unique unforgeable identifier of the bitfile.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for
example to link log messages from various subsystems to the
original client request.

OwnerRecFlags Used to set reverse map fields in the owner record.

InSelectBitmap Specifies the attribute fields that are to be changed. The bitfile
attributes flags are specified under Data Definitions in the
bf_attrib_t structure.

OutSelectBitmap Indicates the attribute fields that were changed. The bitfile
attributes flags are specified under Data Definitions in the
bf_attrib_t structure.

InBfAttribPtr ->bf_attrib_t Bitfile attribute values to be used to set the new attributes. See
the bf_attrib_t structure under Data Definitions for a list of the
attributes that can be changed.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-11
Rev. 0

OutBfAttribPtr ->bf_attrib_t Newly updated attribute values. See the bf_attrib_t structure
under Data Definitions for a list of the attributes that can be
changed. Setable attributes are as follows:

CREATE_TIME
MODIFY_TIME
WRITE_TIME
READ_TIME
OWNER_REC
COS_ID
REGISTER_BITMAP
ACCT

Ta Kerberos style authorization ticket.

RPCError->trpc_status_t RPC exception status code for a non-transactional RPC.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EINVAL Attempt to set the Class of Service to a value that does not refer
to a currently defined Class of Service

Setting of DATA_LEN is not supported on a non-open version of
SetAttrs.

Format of the bitfile id pointed to by BfIdPtr is not valid.

HPSS_EBADCONN Connection handle is invalid.

HPSS_ESYSTEM Severe system error occurred during processing of request.

HPSS_ENOSPACE Attempt to add more owner rec entries than supported.

HPSS_ENOSUPPORT Attempt to set SECURITY attrbute. Not supported in this release.

See also
bfs_BitfileOpenSetAttrs, bfs_BitfileOpenGetAttrs, bfs_BitfileGetAttrs.

Clients
Client API, Storage System Manager.

Notes
LinkCount cannot be set through a bfs_BitfileSetAttrs call. It can only be set by link and unlink
calls. On one bfs_BitfileSetAttrs call, reverse maps (OwnerRec) can be either added or deleted.
Both cannot be accomplished on the same call.

Chapter 3: Bitfile Server Functions

3-12 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.6. bfs_BitfileOpenSetCosByHints

Purpose
Reselect a COS or select a better storage segment size for a file on disk.

Syntax

#include "bfs_interface.h"

signed32
bfs_BitfileSetAttrs (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
hpssoid_t *BfIdPtr, /* IN */
unsigned32 ResetFlags, /* IN */
reqid_t ReqId, /* IN */
hpss_cos_hints_t *HintsPtr, /* IN */
hpss_cos_priorities_t *PriorPtr, /* IN */
hpss_cos_md_t *COSPtr, /* OUT */
trpc_status_t *RPCError); /* OUT */

Description
The attributes specified in the attribute structure that can be rewritten replace the current values.

Parameters
Binding Encina remote procedure call binding handle.

CNHPtr->hpss_connect_handle_t
Handle that defines the connection context for this user.

BfIdPtr->hpssoid_t Unique unforgeable identifier of the bitfile.

ResetFlags Option flags:

BFS_RESET_SEGSIZE - Select only a new storage segment
size.

0 - Select a new COS.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for
example to link log messages from various subsystems to the
original client request.

HintsPtr Pointer to COS hints.

PriorPtr Pointer to COS priorities.

COSPtr Pointer to structure for COS actually assigned.

RPCError->trpc_status_t RPC exception status code for a non-transactional RPC.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-13
Rev. 0

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EINVAL HintsPtr or PriorPtr is NULL.

Request to select storage segment size and no file hints for min
or max file size provided.

HPSS_EBADCONN Connection handle is invalid.

HPSS_ESYSTEM Severe system error occurred during processing of request.

HPSS_BUSY_RETRY Open file is currently active.

HPSS_ECONFLICT Conflict in bitfile cache information???

HPSS_EMDATA SFS error detected in processing BFS metadata.

See also
None.

Clients
Client API.

Notes
The ResetFlags field determines whether the COS is to be reselected or if a better storage
segment should be selected for a file on disk. The reselection can only be performed if the file
has no data in it at the time of request.

Chapter 3: Bitfile Server Functions

3-14 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.7. bfs_Clear

Purpose
Provides for the clearing of a specific piece of a bitfile. Maps are redone and associated storage
is freed when possible.

Syntax
#include "bfs_interface.h"

signed32
bfs_Clear (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
hpss_object_handle_t *BfhPtr, /* IN */
unsigned32 Flags, /* IN */
reqid_t ReqId, /* IN */
u_signed64 Offset, /* IN */
u_signed64 Length /* IN */
trpc_status_t *RPCError); /* OUT */

Description
Provides for the clearing of a specific piece of a bitfile. Maps are redone and associated storage
is freed when possible.

Parameters
Binding Remote procedure call Encina binding handle.

CNHPtr Pointer to the connection handle that defines the connection
context for this user.

BfhPtr Pointer to the bitfile handle and contains the information
necessary for the Bitfile Server to find the cached metadata for
the bitfile.

Flags Flag settings. No settings in this release.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for
example to link log messages from various subsystems to the
original client request.

Offset Bitfile offset where the clear should begin.

Length Amount of data to clear.

RPCError->trpc_status_t RPC exception status code for a non-transactional RPC.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EBADCONN Connection handle is invalid.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-15
Rev. 0

HPSS_EPERM File must be open for write to do a clear operation.

HPSS_EINVAL Length paramater = 0. Must be greater than 0.

HPSS_ESYSTEM Severe system error occurred during processing of request.

HPSS_EBADBFHANDLE The bitfile handle pointed to by BfhPtr does not refer to a
currently open bitfile.

HPSS_ENOMEM Memory allocation error occurred during processing of request.

HPSS_EBUSY A request is already active on this bitfile handle.

See also
None.

Clients
Client API.

Notes
This routine is needed for the client API so that it can support NFS.

Chapter 3: Bitfile Server Functions

3-16 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.8. bfs_Close

Purpose
Close a previously opened bitfile.

Syntax
#include "bfs_interface.h"

signed32
bfs_Close (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
hpss_object_handle_t *BfhPtr, /* IN */
reqid_t ReqId /* IN */
trpc_status_t *RPCError); /* OUT */

Description
Close will return resources associated with an open bitfile and invalidate the bitfile handle.

Parameters
Binding Encina remote procedure call binding handle.

CNHPtr->hpss_connect_handle_t
Handle that defines the connection context for this user. The
value is NULL if the call is internal.

BfhPtr->hpss_object_handle_t Bitfile handle and contains the information necessary for the
Bitfile Server to find the cached metadata for the bitfile.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for
example to link log messages from various subsystems to the
original client request.

RPCError->trpc_status_t RPC exception status code for a non-transactional RPC.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EBADCONN Connection handle is invalid.

HPSS_ESYSTEM Severe system error occurred during processing of request.

HPSS_EBADBFHANDLE The bitfile handle pointed to by BfhPtr does not refer to a
currently open bitfile.

HPSS_ENOMEM Memory allocation error occurred during processing of request.

HPSS_EBADBFHANDLE The bitfile handle pointed to by BfhPtr does not refer to a
currently open bitfile.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-17
Rev. 0

HPSS_EMDATA SFS error detected in processing BFS metadata.

HPSS_ECOMM Cannot communicate with storage servers to shut down any
storage server sessions associated with this bitfile

HPSS_EBUSY A request is already active on this bitfile handle. If the close
request came from a client, the client will receive this error. If the
close is generated by BFS in response to a connection being
dropped, BFS delays until RPC finishes and the closes

See also
bfs_Open.

Clients
Client API, Bitfile Server.

Notes
None.

Chapter 3: Bitfile Server Functions

3-18 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.9. bfs_CopyFile

Purpose
Copy one bitfile to another.

Syntax
#include "bfs_interface.h"

signed32
bfs_Unlock (

trpc_handle_t Binding, /* IN */
hpss_object_handle_t *CNHPtr, /* IN */
hpss_object_handle_t *SrcBfhPtr, /* IN */
hpss_object_handle_t *DstBfhPtr, /* IN */
reqid_t ReqId /* IN */
unsigned32 Flags /* IN */
signed32 DstStorageLevel /* IN */
trpc_status_t *RPCError); /* IN */

Description
The data from the source bitfile is copied to the destination bitfile.

Parameters
Binding Remote procedure call binding handle.

CNHPtr->hpss_connect_handle_t
Handle that defines the connection context for this user.

SrcBfhPtr->hpss_object_handle_t
Bitfile handle and contains the information necessary for the
Bitfile Server to find the cached metadata for the source bitfile.

DstBfhPtr->hpss_object_handle_t
Bitfile handle and contains the information necessary for the
Bitfile Server to find the cached metadata for the source bitfile.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for
example to link log messages from various subsystems to the
original client request.

Flags Flags settings:

BFS_NO_TRUNC_DEST = 0x00000002

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EBADCONN Connection handle is invalid.

HPSS_ESYSTEM Severe system error occurred during processing of request.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-19
Rev. 0

HPSS_EBADBFHANDLE The bitfile handle pointed to by BfhPtr does not refer to a
currently open bitfile.

HPSS_ENOMEM Memory allocation error occurred during processing.

HPSS_EMDATA SFS error detected in processing BFS metadata.

HPSS_EINVAL Destination file must be open for exclusive access. Destination
storage level is invalid.

HPSS_EPERM Caller specified a destination storage level to copy to. Only
authorized callers with write permission may do this. Destination
file must be open for write.

HPSS_EBUSY A request is already active on this bitfile handle.

See also
None.

Clients
Bitfile Server.

Notes
This function is called internally by the BFS to move data in relation to a request to change the
COS of a bitfile.

Chapter 3: Bitfile Server Functions

3-20 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.10. bfs_Create

Purpose
Create a bitfile and allocate space.

Syntax

#include "bfs_interface.h"

[transactional]
signed32
bfs_Create (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
u_signed64 BfAttribFlags, /* IN */
bf_attrib_t *BfAttribPtr, /* IN */
reqid_t ReqId, /* IN */
hpss_cos_hints_t *HintsPtr, /* IN */
hpss_cos_priorities_t *PriorPtr, /* IN */
gss_token_t Ta, /* IN */
hpssoid_t *BfIdPtr, /* OUT */
hpss_cos_md_t *COSPtr /* OUT */
gss_token_t *BfTa); /* OUT */

Description
bfs_Create will create a bitfile, allocate space for it, and save the information for the bitfile
metadata.

Parameters
Binding Remote procedure call binding handle.

CNHPtr->hpss_connect_handle_t
Handle that defines the connection context for this user.

BfAttribFlags Set attributes flags.

BfAttribPtr->bf_attrib_t Pointer to the bitfile attributes struct, including DataLen, COSId,
ExpireTime, RevMap, and Acct.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for
example to link log messages from various subsystems to the
original client request.

HintsPtr->hpss_cos_hints_t Address of COS hints parameters.

PriorPtr->hpss_cos_priorities_t Address of COS priorities.

Ta Authorization ticket.

BfIdPtr->hpssoid_t Unique identifier of the bitfile.

COSPtr ->hpss_cos_md_t Address of the COS structure.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-21
Rev. 0

*BfTa->gss_token_t Address of a ticket containing the bitfile ID encrypted in the key of
the Name Server.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EBADCONN Connection handle is invalid.

HPSS_ESYSTEM Severe system error occurred during processing of request.

HPSS_ENOSUPPORT Attempt to set SECURITY attribute. Not supported in this
release.

HPSS_ENOMEM Memory allocation error occurred during processing.

HPSS_EMDATA SFS error detected in processing BFS metadata.

HPSS_EINVALCOS Class of Service requested for bitfile does not exist.

HPSS_EINVALCOSHINTS Hints structure passed for Class of Service selection is invalid.

HPSS_EPERM Ticket passed from name server does not have insert permission
indicated.

See also
bfs_Unlink.

Clients
Client API, Bitfile Server.

Notes
None.

Chapter 3: Bitfile Server Functions

3-22 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.11. bfs_GetCOSStats

Purpose
Get storage statistics for a specific class of service.

Syntax
#include "bfs_interface.h"

signed32
bfs_Lock (

trpc_handle_t Binding, /* IN */
hpss_object_handle_t *CNHPtr, /* IN*/
reqid_t ReqId /* IN */
cos_t COSId /* IN */
unsigned32 *MaxOpenBitfiles /* OUT */
u_signed64 *BlockSize /* OUT */
u_signed64 *TotalBytes /* OUT */
u_signed64 *FreeBytes /* OUT */
trpc_status_t *RPCError); /* OUT*/

Description
Returns statistics for a given COS.

Parameters
Binding Remote procedure call binding handle.

CNHPtr->hpss_connect_handle_t
Handle that defines the connection context for this user.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for
example to link log messages from various subsystems to the
original client request.

COSId ID of the Class of Service that information is being requested on.

MaxOpenBitfiles Pointer to an area where the Bitfile Server will return the
maximum number of bitfiles that may be open concurrently by
the Bitfile Server.

BlockSize Pointer to an area where the blocksize of the storage class at the
top of the hierarchy for this COS is returned.

TotalBytes Pointer to an area where the total bytes of storage present in this
storage class is returned.

FreeBytes Pointer to an area where the total number of bytes available for
allocation in this COS is returned.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-23
Rev. 0

HPSS_EBADCONN Connection handle is invalid.

HPSS_EINVALCOS Class of Service requested does not exist.

See also
None.

Clients
Client API.

Notes
1. This function is primarily intended for the NFS server. The NFS Server is the only one using
this function currently.

Chapter 3: Bitfile Server Functions

3-24 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.12. bfs_Migrate

Purpose
Copy data in from one level in the hierarchy to 1 or more lower levels in the hierarchy.

Syntax
#include "bfs_interface.h"

signed32
bfs_Migrate (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
hpss_object_handle_t *BfhPtr, /* IN */
reqid_t ReqId, /* IN */
unsigned32 SrcLevel, /* IN */
unsigned32 DestHierId, /* IN */
unsigned32 DestLevel, /* IN */
unsigned32 Flags, /* IN */
u_signed64 *TotalBytesMoved, /* OUT */
hpss_segment_list_t *SegListPtr /* IN */
trpc_status_t *RPCError); /* OUT */

Description
Copy data from one level in a storage hierarchy to level in the hierarchy to one or more lower
levels in the hierarchy. The copy is made non-transactionally.

Parameters
Binding Remote procedure call Encina binding handle.

CNHPtr Pointer to the connection handle that defines the connection
context for this user.

BfhPtr Pointer to the bitfile handle and contains the information
necessary for the Bitfile Server to find the cached metadata for
the bitfile.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for
example to link log messages from various subsystems to the
original client request.

SrcLevel Storage level to copy from.

DestHierId ID of the storage hierarchy to copy to.

DestLevel Storage level to copy to.

Flags Flag settings:

BFS_MIGRATE_ALL

BFS_MIGRATE_FORCE

BFS_MIGRATE_PURGE_DATA

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-25
Rev. 0

BFS_MIGRATE_NO_MARk_PURGE

BFS_MIGRATE_MULTIIPLE_COPY_OP

TotalBytesMoved Pointer to the number of bytes copied.

SegListPtr Pointer to the list of storage segments that are to be copied.

RPCError->trpc_status_t RPC exception status code for a non-transactional RPC.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EBADCONN Connection handle is invalid.

HPSS_ESYSTEM Severe system error occurred during processing of request.

HPSS_ENOMEM Memory allocation error occurred during processing.

HPSS_EMDATA SFS error detected in processing BFS metadata.

HPSS_EBUSY A request is already active on this bitfile handle.

HPSS_ENOSPACE Unable to allocate sufficient space in destination storage class.

HPSS_ENOMEM Memory allocation error occurred during processing.

HPSS_EPERM File must be open for write to do migration.

Only authorized callers with write permission may issue migrate
calls.

HPSS_ECONN Communication with one or more servers needed to carry out
this request failed.

HPSS_ENOTALLCOPIED An error resulted in not all data being copied during this request.

See also
bfs_Move, bfs_Purge.

Clients
Client API.

Notes
None.

Chapter 3: Bitfile Server Functions

3-26 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.13. bfs_Open

Purpose
Ready a bitfile for subsequent operations.

Syntax
#include "bfs_interface.h"

signed32
bfs_Open (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
hpssoid_t *BfIdPtr, /* IN */
gss_token_t Ta, /* IN */
unsigned32 OpenFlags, /* IN */
reqid_t ReqId, /* IN */
hpss_object_handle_t *BfhPtr, /* OUT */
trpc_status_t *RPCError); /* OUT */

Description
bfs_Open will access the bitfile metadata, verify authorization, set up the bitfile handle so the
bitfile is quickly available for subsequent requests, and allocate resources that will be needed.

Parameters
Binding Encina remote procedure call binding handle.

CNHPtr->hpss_connect_handle_t
Handle that defines the connection context for this user.

BfIdPtr->hpssoid_t Unique unforgeable identifier of the bitfile.

Ta Kerberos style authorization ticket.

OpenFlags Operations that may be performed on the bitfile and is the logical
sum of the desired flags. For example read, write, or destroy.

BFS_OPEN_READ

BFS_OPEN_WRITE

BFS_OPEN_MODIFY

BFS_OPEN_APPEND

BFS_OPEN_TRUNCATE

BFS_OPEN_EXCLUSIVE

BFS_OPEN_NO_STAGE

BFS_OPEN_MIGRATE

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-27
Rev. 0

example to link log messages from various subsystems to the
original client request.

BfhPtr->hpss_object_handle_t Bitfile handle and contains the information necessary for the
Bitfile Server to find the cached metadata for the bitfile.

RPCError->trpc_status_t RPC exception status code for a non-transactional RPC.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EBADCONN Connection handle is invalid.

HPSS_ESYSTEM Severe system error occurred during processing of request.

HPSS_ENOMEM Memory allocation error occurred during processing.

HPSS_EMDATA SFS error detected in processing BFS metadata.

HPSS_ENOSPACE Unable to allocate sufficient space in target storage class when
automatic stage on open is set.

HPSS_ECONN Communication with one or more servers needed to carry out
this request failed.

HPSS_EPERM An attempt has been made to open a file with options that the
user is not authorized to use.

HPSS_EINVAL The BFIdPtr paramater is NULL

HPSS_ENOENT Bitfile which is target of the request does not exist.

HPSS_EMAXBFOPEN Too many bitfile already open in BFS.

HPSS_ECONFLICT Open options specified conflict with what is allowed for the Class
of Service the file belongs to.

Open is for exclusive access and file is already open by another
user.

Open options include truncation but write is not also specified.

Open options include both truncation and append.

See also
bfs_Close.

Clients
Client API, Bitfile Server.

Notes

Chapter 3: Bitfile Server Functions

3-28 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-29
Rev. 0

3.1.14. bfs_Purge

Purpose
Reclaim space occupied by duplicated portions of a bitfile by purging bitfile data at a specified
level in the storage hierarchy.

Syntax
#include "bfs_interface.h"

signed32
bfs_Purge (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
hpss_object_handle_t *BfhPtr, /* IN */
reqid_t ReqId, /* IN */
unsigned32 Flags, /* IN */
unsigned32 StorageLevel, /* IN */
u_signed64 PgOffset, /* IN */
u_signed64 PgLen, /* IN */
u_signed64 *BytesPurged, /* OUT */
hpss_segment_list_t *SegListPtr, /* IN */
trpc_status_t *RPCError); /* OUT */

Description
The specified space occupied by a bitfile that has been migrated to a lower level in the storage
hierarchy is reclaimed and the metadata is updated. Purge is executed non-transactionally.

Parameters
Binding Remote procedure call Encina binding handle.

CNHPtr Pointer to the connection handle that defines the connection
context for this user.

BfhPtr Pointer to the bitfile handle and contains the information
necessary for the Bitfile Server to find the cached metadata for
the bitfile.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for
example to link log messages from various subsystems to the
original client request.

Flags Flag settings:

PURGE_ALL

PURGE_FORCE

StorageLevel Level in the storage hierarchy that is to be purged.

PgOffset Page offset. It is not used in delivery 2 and should be set to 0.

PgLen Page length. It is not used in delivery 2 and should be set to 0.

Chapter 3: Bitfile Server Functions

3-30 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

BytesPurged Pointer to a variable where the total number of bytes purged on
this call will be returned.

SegListPtr List of storage segment ids. Data that is stored in these storage
segments will be purged.

RPCError->trpc_status_t RPC exception status code for a non-transactional RPC.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EBADCONN Connection handle is invalid.

HPSS_ESYSTEM Severe system error occurred during processing of request.

HPSS_ENOMEM Memory allocation error occurred during processing.

HPSS_EMDATA SFS error detected in processing BFS metadata.

HPSS_EBADBFHANDLE The bitfile handle pointed to by BfhPtr does not refer to a
currently open bitfile.

HPSS_ENOTSUPPORTED Current releases of HPSS do not support specifying a purge
offset and purge length in the paramaters.

HPSS_EPERM File must be open for write to issues purge calls.

HPSS_EINVAL StorageLevel paramaters is invalid.

PURGE_ALL is not specified, but not list of storage segments to
purge is provided.

PURGE_ALL is specified and a storage segment list is passed.

HPSS_EBUSY A request is already active on this bitfile handle.

See also
None.

Clients
Client API.

MPS.

Notes
None.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-31
Rev. 0

3.1.15. bfs_Read

Purpose
Read data from the HPSS to the client.

Syntax
#include "bfs_interface.h"

signed32
bfs_Read (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
hpss_object_handle_t *BfhPtr, /* IN */
reqid_t ReqId, /* IN */
unsigned32 Flags, /* IN */
IOD_t *IODPtr, /* IN */
IOR_t *IORPtr, /* OUT */
trpc_status_t *RPCError); /* OUT */

Description
Data is moved from the HPSS to the client as defined by the input/output descriptor. This is
accomplished in conjunction with the Storage Server and the Mover.

Parameters
Binding Encina remote procedure call binding handle.

CNHPtr->hpss_connect_handle_t
Handle that defines the connection context for this user.

BfhPtr->hpss_object_handle_t Bitfile handle and contains the information necessary for the
Bitfile Server to find the cached metadata for the bitfile.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for
example to link log messages from various subsystems to the
original client request.

Flags Series of bits to represent various processing options.

BFS_READ_SEQUENTIAL

IODPtr->iod_t Input-output descriptor that defines the entire data transfer. It
has the necessary control for serial or parallel data transfer.

IORPtr->ior_t Input-output response that defines the results of the data
transfer.

RPCError->trpc_status_t RPC exception status code for a non-transactional RPC.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

Chapter 3: Bitfile Server Functions

3-32 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_EBADCONN Connection handle is invalid.

HPSS_ESYSTEM Severe system error occurred during processing of request.

HPSS_ENOMEM Memory allocation error occurred during processing.

HPSS_EMDATA SFS error detected in processing BFS metadata.

HPSS_EBADBFHANDLE The bitfile handle pointed to by BfhPtr does not refer to a
currently open bitfile.

HPSS_EINVAL IOD does not indicate READ. IOD is invalid or specifies
unsupported options.

HPSS_EPERM File not open for read.

HPSS_EBUSY A request is already active on this bitfile handle.

HPSS_ECONN Communication with one or more servers needed to carry out
this request failed.

See also
bfs_Write.

Clients
Client API.

Notes
The IOD and IOR duplicate some of the parameters and return values of this function. For
example the request ID is also in the IOD and the return value is in the IOR.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-33
Rev. 0

3.1.16. bfs_ServerGetAttrs

Purpose
This is the get-server-status request as used to get the status of the Bitfile Server.

Syntax
#include "bfs_interface.h"

signed32
bfs_ServerGetAttrs (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
hpss_server_attrib_t *OutServerData, /* OUT */
trpc_status_t *RPCError); /* OUT */

Description
The Bitfile Server status is obtained.

Parameters
Binding Encina remote procedure call binding handle.

CNHPtr->hpss_connect_handle_t
Handle that defines the connection context for this user.

OutServerData->hpss_server_attrib_t
Current attribute values.

RPCError->trpc_status_t RPC exception status code for a non-transactional RPC.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EBADCONN Connection handle is invalid.

See also
bfs_ServerSetAttrs.

Clients
Storage System Manager.

Notes
None.

Chapter 3: Bitfile Server Functions

3-34 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.17. bfs_ServerSetAttrs

Purpose
This is the set-server-status request as used to set the status of the Bitfile Server.

Syntax
#include "bfs_interface.h"

signed32
bfs_ServerSetAttrs (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
u_signed64 InSelectBitmap, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
hpss_server_attrib_t *InServerData, /* IN */
hpss_server_attrib_t *OutServerData, /* OUT */
trpc_status_t *RPCError); /* OUT */

Description
The Bitfile Server status is modified by the parameters set in the Bitfile Server attributes structure.

Parameters
Binding Encina remote procedure call binding handle.

CNHPtr->hpss_connect_handle_t
Handle that defines the connection context for this user.

InSelectBitmap Specifies the attribute fields that are to be changed. The HPSS
server attributes flags are defined in the hpss_server_attrib.idl
file. Setable attributes are REG_ADMINISTRATIVE_STATE and
REG_REGISTER_BITMAP.

OutSelectBitmap Indicates the attribute fields that were changed. The HPSS
server attributes flags are defined in the hpss_server_attrib.idl
file.

InServerData->hpss_server_attrib_t
Bitfile attribute values to be used to set the new attributes.

OutServerData->hpss_server_attrib_t
Newly updated attribute values.

RPCError->trpc_status_t RPC exception status code for a non-transactional RPC.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EBADCONN Connection handle is invalid.

HPSS_ENOTSUPPORTED Unsupported option requested. The unsupported options are
REINIT and REPAIR.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-35
Rev. 0

See also
bfs_ServerGetAttrs.

Clients
Storage System Manager.

Notes
None.

Chapter 3: Bitfile Server Functions

3-36 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.18. bfs_Stage

Purpose
Copy a specific part of a bitfile up to the highest, most responsive level in the storage hierarchy,
but leave the original data unchanged.

Syntax
#include "bfs_interface.h"

signed32
bfs_Stage (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
hpss_object_handle_t *BfhPtr, /* IN */
reqid_t ReqId, /* IN */
unsigned32 Flags, /* IN */
unsigned32 StorageLevel, /* IN */
u_signed64 StOffset, /* IN */
u_signed64 StLen, /* IN */
trpc_status_t *RPCError); /* OUT */

Description
The Bitfile Server copies the desired data to the highest level in the storage hierarchy. The
original data at the lower level in the hierarchy is left intact. Data in holes will not be staged and
will not generate errors. The staged copy is made non-transactionally.

Parameters
Binding Remote procedure call Encina binding handle.

CNHPtr Pointer to the connection handle that defines the connection
context for this user.

BfhPtr Pointer to the bitfile handle and contains the information
necessary for the Bitfile Server to find the cached metadata for
the bitfile.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for
example to link log messages from various subsystems to the
original client request.

Flags Flag settings:

BFS_STAGE_ALL

BFS_INTERNAL_STAGE

BFS_ASYNCH_CALL

StorageLevel Level in the storage hierarchy. (This parameter is currently not
used and should be set to 0.)

StOffset Offset in the bitfile where the stage should begin.

StLen Amount of data to stage.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-37
Rev. 0

RPCError->trpc_status_t RPC exception status code for a non-transactional RPC.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EBADCONN Connection handle is invalid.

HPSS_ESYSTEM Severe system error occurred during processing of request.

HPSS_ENOMEM Memory allocation error occurred during processing.

HPSS_EMDATA SFS error detected in processing BFS metadata.

HPSS_EBADBFHANDLE The bitfile handle pointed to by BfhPtr does not refer to a
currently open bitfile.

HPSS_EINVAL Invalid StorageLevel specified. StOffset specifies a position
beyond the end of the bitfile.

HPSS_EBUSY A request is already active on this bitfile handle.

HPSS_ENOTALLCOPIED An error resulted in not all data being copied during this request.

See also
bfs_Migrate, bfs_StageCallBack.

Clients
Client API, Bitfile Server.

Notes
None.

Chapter 3: Bitfile Server Functions

3-38 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.19. bfs_StageCallBack

Purpose
Copy a specific part of a bitfile up to the highest, most responsive level in the storage hierarchy,
as a background request with callback.

Syntax
#include "bfs_interface.h"

signed32
bfs_StageCallBack (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
hpss_object_handle_t *BfhPtr, /* IN */
reqid_t ReqId, /* IN */
unsigned32 Flags, /* IN */
unsigned32 StorageLevel, /* IN */
u_signed64 StOffset, /* IN */
u_signed64 StLen, /* IN */
bfs_callback_addr_t *CallBackPtr, /* IN */
gss_token_t Ta, /* IN */
trpc_status_t *RPCError); /* OUT */

Description
The Bitfile Server copies the desired data to the highest level in the storage hierarchy. The
original data at the lower level in the hierarchy is left intact. Data in holes will not be staged and
will not generate errors. The staged copy is made non-transactionally.

Parameters
Binding Remote procedure call Encina binding handle.

CNHPtr Pointer to the connection handle that defines the connection
context for this user.

BfhPtr Pointer to the bitfile handle and contains the information
necessary for the Bitfile Server to find the cached metadata for
the bitfile.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for
example to link log messages from various subsystems to the
original client request.

Flags Flag settings:

BFS_STAGE_ALL

BFS_INTERNAL_STAGE

BFS_ASYNCH_CALL

BFS_CALLBACK_CALL

StorageLevel Level in the storage hierarchy. (This parameter is currently not
used and should be set to 0.)

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-39
Rev. 0

StOffset Offset in the bitfile where the stage should begin.

StLen Amount of data to stage.

CallBackPtr Pointer to address of where to send the response for the stage
request. If NULL, no response is requested.

Ta Kerberos style authorization ticket.

RPCError->trpc_status_t RPC exception status code for a non-transactional RPC.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EBADCONN Connection handle is invalid.

HPSS_ESYSTEM Severe system error occurred during processing of request.

HPSS_ENOMEM Memory allocation error occurred during processing.

HPSS_EMDATA SFS error detected in processing BFS metadata.

HPSS_EBADBFHANDLE The bitfile handle pointed to by BfhPtr does not refer to a
currently open bitfile.

HPSS_EINVAL Invalid StorageLevel specified. StOffset specifies a position
beyond the end of the bitfile.

HPSS_EBUSY A request is already active on this bitfile handle.

HPSS_ENOTALLCOPIED An error resulted in not all data being copied during this request.

HPSS_EPERM Client not authorized to perform the stage request.

See also
bfs_Migrate, bfs_Stage.

Clients
Client API, Bitfile Server.

Notes
None.

Chapter 3: Bitfile Server Functions

3-40 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.20. bfs_Unlink

Purpose
Destroy or unlink a bitfile.

Syntax
#include "bfs_interface.h"

[transactional]
signed32
bfs_Unlink (

trpc_handle_t Binding, /* IN */
hpss_object_handle_t *CNHPtr, /* IN */
hpssoid_t *BfIdPtr, /* IN */
gss_token_t Ta, /* IN */
rev_map_t *RevMapPtr, /* IN */
reqid_t ReqId); /* IN */

Description
If the link count is one, the bitfile will be destroyed. All metadata associated with the file will be
removed and the space used will be reclaimed. If the link count is greater than one, the count is
decremented and the metadata and space are left intact. The bitfile does not have to be open to
unlink it.

Parameters
Binding Encina remote procedure call binding handle.

CNHPtr->hpss_connect_handle_t
Handle that defines the connection context for this user.

BfIdPtr->hpssoid_t Unique unforgeable identifier of the bitfile.

Ta Kerberos style authorization ticket.

RevMapPtr->rev_map Reverse mapping field for the bitfile that is to be destroyed. The
contents of this field are not known to the Bitfile Server.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used, for
example, to link log messages from various subsystems to the
original client request.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

HPSS_EBADCONN Connection handle is invalid.

HPSS_ESYSTEM Severe system error occurred during processing of request.

HPSS_ENOMEM Memory allocation error occurred during processing.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-41
Rev. 0

HPSS_EMDATA SFS error detected in processing BFS metadata.

HPSS_EPERM Name Server ticket does not indicate delete permissions.

HPSS_EINVAL Attempt to unlink a bitfile and the link count is already 0.

HPSS_ENOENT Bitfile which is target of the request does not exist.

See also
bfs_Create.

Clients
Client API, Bitfile Server.

Notes
None.

Chapter 3: Bitfile Server Functions

3-42 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.21. bfs_Write

Purpose
Write data from the client to the HPSS.

Syntax
#include "bfs_interface.h"

signed32
bfs_Write (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNHPtr, /* IN */
hpss_object_handle_t *BfhPtr, /* IN */
reqid_t ReqId, /* IN */
unsigned32 Flags /* IN */
IOD_t *IODPtr, /* IN */
IOR_t *IORPtr, /* OUT */
trpc_status_t *RPCError); /* OUT */

Description
Data is moved from the client to the HPSS as defined by the input/output descriptor. This is
accomplished in conjunction with the Storage Server and the Mover.

Parameters
Binding Encina remote procedure call binding handle.

CNHPtr->hpss_connect_handle_t
Handle that defines the connection context for this user.

BfhPtr->hpss_object_handle_t Bitfile handle and contains the information necessary for the
Bitfile Server to find the cached metadata for the bitfile.

ReqId Unique integer that identifies a particular request. It must be
unique for the duration of the request. It can be used for
example to link log messages from various subsystems to the
original client request.

Flags Series of bits to represent various processing options. Currently
not used.

IODPtr->IOD_t Input-output descriptor that defines the entire data transfer. It
has the necessary control for serial or parallel data transfer.

IORPtr->IOR_t Input-output response that defines the results of the data
transfer.

RPCError->trpc_status_t RPC exception status code for a non-transactional RPC.

Return values
Zero indicates that the function was successful. A value less than zero indicates an error and is a
code that defines the error.

Error conditions
HPSS_ENOTREADY Server not ready for processing requests.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-43
Rev. 0

HPSS_EBADCONN Connection handle is invalid.

HPSS_ESYSTEM Severe system error occurred during processing of request.

HPSS_ENOMEM Memory allocation error occurred during processing.

HPSS_EMDATA SFS error detected in processing BFS metadata.

HPSS_EBADBFHANDLE The bitfile handle pointed to by BfhPtr does not refer to a
currently open bitfile.

HPSS_EINVAL IOD does not indicate WRITE. IOD is invalid or specifies
unsupported options.

HPSS_EPERM File not open for write.

HPSS_EBUSY A request is already active on this bitfile handle.

HPSS_ECONN Communication with one or more servers needed to carry out
this request failed.

HPSS_ENOSPACE Unable to allocate sufficient space in storage class being written
to.

See also
bfs_Read.

Clients
Client API.

Notes
The IOD and IOR duplicate some of the parameters and return values of this function. For
example the request ID is also in the IOD and the return value is in the IOR.

Chapter 3: Bitfile Server Functions

3-44 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.21.1. Data Definitions

This section describes key internal data definitions and all externally used data definitions that are
provided by this subsystem. A data definition may be represented by constructs such as data structures
and constants. For each data definition, a description, format (including parameter descriptions), and
clients which access the data definition are provided.

3.1.22. Bitfile Volatile and Metadata Attributes - bf_attrib_t

Description

The attributes structure for the bitfile object contains all the volatile and metadata bitfile attributes. These
are parameters relating to a bitfile.

Structure use– API parameters.

Format

The bf_attrib has the following format:

typedef struct bf_attrib {
u_signed64 CurrentPosition;
signed32 OpenCount;
bf_attrib_md_t BfAttribMd;

} bf_attrib_t;

(BfAttribFlags– a parameter of bfs_Create and various other functions)

Parameter is used to indicate which fields are to be modified on a set-attributes call. Each bit corresponds
to a particular attribute that can be set. The bit settings are as follows:

BFS_SET_CURRENT_POSITION

BFS_SET_DATA_LEN

BFS_SET_CREATE_TIME

BFS_SET_MODIFY_TIME

BFS_SET_WRITE_TIME

BFS_SET_READ_TIME

BFS_SET_OWNER_REC

BFS_SET_COS_ID

BFS_SET_ACCT

BFS_SET_SECURITY

BFS_SET_REGISTER_BITMAP

(OwnerRecFlags– a parameter of bfs_Create, various other functions)

Parameter is used to indicate which RevMap records in the owner record are being referenced for adding
or deleting. Each bit corresponds to a reverse map field in an owner_rec array. If the bit is 1, this means
to delete the corresponding entry from the owner record. If the bit is 0, then add the RevMap to the owner

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-45
Rev. 0

record. This set of flags is meaningful only if SET_OWNER_REC in BfAttribFlags is also set.

CurrentPosition

The current byte position in the bitfile.

OpenCount

The current number of clients that have the bitfile open.

BfAttribMd

is the struct of bitfile metadata attributes that are stored in the data base.

Clients

The following clients access the data definition:

Client API.

3.1.23. Bitfile Metadata Attributes - bf_attrib_md_t

Description

This structure contains the bitfile attributes metadata. These are parameters relating to a bitfile.

LinkCount is always 1 for a existing bitfile in current HPSS release. On one bfs_Bitfile(Open)SetAttrs call,
reverse maps (OwnerRec) can be either added or deleted. Both cannot be accomplished on the same
call.

Structure use - dynamic memory tables, API parameters, and permanent data base.

Format

The bf_attrib_md has the following format:

typedef struct bf_attrib_md {
u_signed64 DataLen;
signed32 ReadCount;
signed32 WriteCount;
signed32 LinkCount;
timestamp_sec_t CreateTime;
timestamp_sec_t ModifyTime;
timestamp_sec_t WriteTime;
timestamp_sec_t ReadTime;
cos_t COSId;
cos_t NewCOSId;
acct_rec_t Acct;
unsigned32 Flags;
unsigned32 StorageSegMult;
bfs_owner_rec_t OwnerRec;
u_signed64 RegisterBitmap;
security_t Security;

} bf_attrib_md_t;

DataLen

The number of bytes of actual data that the bitfile contains.

ReadCount

The count of the number of times that all or part of the bitfile has been read.

WriteCount

Chapter 3: Bitfile Server Functions

3-46 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The count of the number of times that data has been written to the bitfile.

LinkCount

The number of links to this bitfile. This also indicates how many reverse map IDs are in the bf_rev_map
record for this bitfile.

CreateTime

The date and time the bitfile metadata was created.

ModifyTime

The date and time the bitfile metadata was last modified.

WriteTime

The date and time when data was last written to the bitfile.

ReadTime

The date and time when the bitfile was last read.

COSId

The class of service type (unsigned32) and indicates which of several classes of service the bitfile is in.
This ID references a class of service record that defines the parameters for this particular class of service.

NewCOSId

Indicates the new class of service that a file is to be changed to when the client changes the class of
service on a bitfile. When the change has been completed, the value of this field is moved into COSId
and this field is cleared.

Acct

The accounting metadata for the bitfile. It includes information needed to charge for data storage, access,
transfers, quotas, etc.

Flags

The flag settings. Not currently used.

StorageSegMult

Defines the storage segment multiple used to adjust the size of disk storage segments.

OwnerRec

Defines the reverse map entries for a bitfile and indicates which ones are active or null.

RegisterBitmap

Used to indicate the fields in the attributes structure that the SSM wants to receive notifications for when
the field changes.

BFS_REG_OPEN_COUNT

BFS_REG_DATA_LEN

BFS_REG_READ_COUNT

BFS_REG_WRITE_COUNT

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-47
Rev. 0

BFS_REG_LINK_COUNT

BFS_REG_CREATE_TIME

BFS_REG_MODIFY_TIME

BFS_REG_WRITE_TIME

BFS_REG_READ_TIME

BFS_REG_OWNER_REC

BFS_REG_COS_ID

BFS_REG_ACCT

BFS_REG_SECURITY

This vector is also set to indicate which fields in the attributes structure have changed on notify requests.
If the REG_OWNER_REC field is set, then the SetRevMapFlags field in the bf_attrib struct will be set to
indicate which reverse map entries have changed.

Security

Not currently used.

Clients

The following clients access the data definition:

Client API.

3.1.24. Bitfile Descriptor - bf_descriptor_md_t

Description

This structure contains the description of the bitfile and is the header for the storage allocated and
occupied by the bitfile.

Structure use - dynamic memory tables and permanent data base.

Format

The bf_descriptor_md has the following format:

typedef struct bf_descriptor_md {
hpssoid_t BfId;
bf_attrib_md_t BfAttrib;
bf_level_stats_md_t LevelStats[HPSS_MAX_STORAGE_LEVELS];
u_signed64 reserv1[2];
unsigned32 FamilyID;
signed32 reserv2[1];

} bf_descriptor_md_t;

BfId

The unique bitfile identifier, which is a SOID.

BfAttrib

The structure that contains all the parameters and statistics relating to a bitfile.

Chapter 3: Bitfile Server Functions

3-48 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

LevelStats[HPSS_MAX_STORAGE_LEVELS]

The array of storage level statistics.

HPSS_MAX_STORAGE_LEVELS

The metadata version number for this data structure. The current value is 5.

reserv1[]

Space for growth.

FamilyID

A numeric value that associates the bitfile with a particular HPSS file family.

reserv2[]

Space for growth.

Clients

The following clients access the data definition:

None.

3.1.25. Bitfile Storage Level Statistics - bf_level_stats_md

Description

This structure defines the storage level statistics, which are stored in metadata.

Structure use - dynamic memory tables and permanent data base.

Format

The bf_level_stats_md has the following format:

typedef struct bf_level_stats_md {
unsigned32 Flags;
unsigned32 Pad;
timestamp_sec_t ReadTime;
timestamp_sec_t WriteTime;
timestamp_sec_t MigrateTime;
timestamp_sec_t CacheTime;
signed32 ReadCount;
signed32 WriteCount;

} bf_level_stats_md_t;

Flags

Not currently used.

ReadTime

The date and time when the bitfile was last read.

WriteTime

The date and time when data was last written to the bitfile.

MigrateTime

The date and time when the bitfile data was last migrated to a lower level in the storage hierarchy.

CacheTime

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-49
Rev. 0

The date and time when the bitfile was last cached for quick access.

ReadCount

The count of the number of times that all or part of the bitfile has been read.

WriteCount

The count of the number of times that data has been written to the bitfile.

Clients

The following clients access the data definition:

None.

3.1.26. Bitfile Managed Object Data Structure - bfMO_attrib_t

Description

This structure defines the bitfile managed object data structure. It is used primarily for notifications to the
SSM.

Structure use - dynamic memory tables.

Format

The bfMO_attrib has the following format:

typedef struct bfMO_attrib {
signed32 Version;
hpssoid_t BfId;
bf_attrib_t BfAttrib;

} bfMO_attrib_t;

BfId

The unique unforgeable identifier of the bitfile.

BfAttrib

Provides the attributes of the bitfile.

Clients

The following clients access the data definition:

SSM.

3.1.27. Bitfile Open Context - bf_open_context

Description

This structure is used to keep track of the dynamic control information for bitfiles that are unique to a given
connection.

Structure use - dynamic memory tables.

Format

The bf_open_context has the following format:

typedef struct bf_open_context bf_open_context_t;

struct bf_open_context {

Chapter 3: Bitfile Server Functions

3-50 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

signed32 Index;
pthread_mutex_t Mutex;
int ActiveReqCount;
unsigned32 OpenFlags;
unsigned32 Flags;
hpssoid_t BfId;
bf_cache_entry_t *BfCachePtr;
u_signed64 CurrentPosition;
signed32 SSFlags [BFS_MAX_SS_PER_OPEN];
hpss_object_handle_t SSSessionId [BFS_MAX_SS_PER_OPEN];
uuid_t SSId [BFS_MAX_SS_PER_OPEN];
unsigned16 LevelAccessed;

} ;

Index

The index in the array of bitfile open context structures in a bf_open_context_list.

Mutex

Used to serialize access to this table.

ActiveReqCount

The number of requests using the bitfile.

OpenFlags

Define the requested access to the bitfile. The values are defined in the bfs_Open API.

Flags

Not currently used.

BfId

The bitfile ID, a SOID.

BfCachePtr

Pointer to a bitfile cache entry.

CurrentPosition

The current byte position of the file.

SSFlags

The status flags for the Storage Server. The only value currently defined indicates a valid session to the
Storage Server: SS_SESSION_VALID.

SSSessionId

The array of all the Storage Server sessions actively operating on this bitfile.

SSId

The array of all the Storage Server IDs actively operating on this bitfile.

BFS_MAX_SS_PER_OPEN

The maximum number of Storage Servers that can be associated with an open file. The current value is
5.

LevelAccessed

Used to optimize file accesses for accounting.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-51
Rev. 0

Clients

The following clients access the data definition:

None.

3.1.28. Bitfile Open Context List - bf_open_context_list_t

Description

This structure is a header structure used to control bitfile open context information.

Structure use - dynamic memory tables.

Format

The bf_open_context_list has the following format:

typedef struct bf_open_context_list {
pthread_mutex_t Mutex;
signed32 MaxCount;
unsigned FreeCount;
bf_open_context_hdr_t *ContextListPtr;

} bf_open_context_list_t;

Mutex

Used to serialize access to this table.

MaxCountt

The maximum number of bitfiles that can be open in the Bitfile Server at once.

FreeCount

The number of open context blocks that are unused.

ContextListPtr

Points to an array of structures with each element in the array controlling the information associated with
one open bitfile

Clients

The following clients access the data definition:

None.

3.1.29. Bitfile Open Context Header - bf_open_context_hdr_t

Description

This structure is a description of one element of an array that is used to control the user of bitfile open
context information.

Structure use - dynamic memory tables.

Format

The bf_open_context_hdr has the following format:

typedef struct bf_open_context_hdr {
signed32 Index;
int Inuse;

Chapter 3: Bitfile Server Functions

3-52 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

bf_open_context_hdr_t *NextConnectPtr;
bf_open_context_t *OpenContextPtr;

} bf_open_context_hdr_t;

Index

Identifies which element in the array of headers this structure represents.

InUse

This entry and the associated bf_open_context is in use.

NextConnectPtr

Open context information is kept on a list off the connection handle . When a file is opened with a given
connection, the bitfile open context informational is chained to this list via the bf_open_context header.
This pointer has the address of the next one on the chain.

OpenContextPtr

Points to the open context associated with this entry. The open context structure is malloc’ed and open
and freed when file is closed.

Clients

The following clients access the data definition:

none

3.1.30. Bitfile Tape Segment Metadata - bf_tape_segment_md_t

Description

This structure defines a bitfile’s Storage Server storage location for tape media, the metadata structure for
a bitfile segment on tape.

Structure use - dynamic memory tables and permanent data base.

Format

The bf_tp_segment_md has the following format:

typedef struct bf_tape_segment_md {
hpssoid_t BfId;
unsigned32 StorageClass;
unsigned32 Flags;
hpssoid_t SSegId;
u_signed64 SSegOffset;
u_signed64 BfSegLength;
u_signed64 BfOffset;
timestamp_t ReadTime;
timestamp_t WriteTime;
timestamp_t MigrateTime;
timestamp_t CacheTime;

} bf_tape_segment_md_t;

BfId

The unique unforgeable identifier of the bitfile.

StorageClass

Represents the type of data storage.

Flags

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-53
Rev. 0

Set of flags that give information about the state of a bitfile tape segment.

SSSegId

The identification of the storage segment as assigned by the Storage Server.

SSSegOffset

The byte offset in the storage segment where a data write starts.

BfSegLength

The amount of data written into this bitfile segment in bytes.

BfOffset

The byte offset (starting address) of this bitfile segment within the logical bitfile.

ReadTime

The date and time when the bitfile segment was last read.

WriteTime

The date and time when data was last written to the bitfile segment.

MigrateTime

The date and time when the bitfile segment was last migrated to a lower level in the storage hierarchy.

CacheTime

The date and time when the bitfile segment data was last cached for quick access.

Clients

The following clients access the data definition:

None.

3.1.31. Bitfile Disk Segment Metadata - bf_disk_segment_md_t

Description

This structure defines a bitfile’s Storage Server storage location for disk media, the metadata structure for
a bitfile segment on disk.

Structure use - dynamic memory tables and permanent data base.

Format

The bf_disk_segment_md has the following format:

typedef struct bf_disk_segment_md {
hpssoid_t BfId;
unsigned32 StorageClass;
unsigned32 Flags;
u_signed64 BfSegLength;
u_signed64 BfOffset;

} bf_disk_segment_md_t;

BfId

The unique unforgeable identifier of the bitfile.

StorageClass

Chapter 3: Bitfile Server Functions

3-54 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Represents the type of data storage.

Flags

Set of flags that give information about the state of a bitfile disk segment.

BfSegLength

The amount of data written into this bitfile segment in bytes.

BfOffset

The byte offset (starting address) of this bitfile segment within the bitfile where this bitfile segment starts.

Note:

Access statistics are kept in the disk map.

Clients

The following clients access the data definition:

None.

3.1.32. Bitfile Disk Segment Region - bf_disk_region_md_t

Description

This structure defines the storage allocation and statistics for a fixed length portion of a bitfile stored on
disk.

Structure use - dynamic memory tables.

Format

The bf_disk_region_md has the following format:

typedef struct bf_disk_region_md {
hpssoid_t SSegId;
timestamp_t ReadTime;
timestamp_t WriteTime;
timestamp_t MigrateTime;
timestamp_t CacheTime;
unsigned32 Flags;
unsigned32 Pad;

} bf_disk_region_md_t;

SSegId

The identifier of the storage segment .

ReadTime

The date and time when the bitfile segment was last read.

WriteTime

The date and time when data was last written to the bitfile segment.

MigrateTime

The date and time when the bitfile segment was last migrated to a lower level in the storage hierarchy.

CacheTime

The date and time when the bitfile segment was last cached for quick access.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-55
Rev. 0

Flags

Set of status flags for a bitfile allocation map entry.

Pad

Pad for 64-bit alignment.

Clients

The following clients access the data definition:

None.

3.1.33. Bitfile Disk Allocation Map Metadata - bf_disk_alloc_rec_md_t

Description

This structure defines a bitfile’s allocation map metadata record.

Structure use - permanent data base.

Format

The bf_disk_alloc_rec_md has the following format:

typedef struct bf_disk_alloc_rec_md {
hpssoid_t BfId;
unsigned32 RecordNumber;
unsigned32 StorageClass;
unsigned32 StorageSegmentSize;
unsigned32 Pad;
bf_disk_segment_entry_t RegionInfo[HPSS_MAX_DISK_SEGS_PER_MAPREC];

} bf_disk_alloc_rec_md_t;

BfId

The unique unforgeable identifier of the bitfile.

RecordNumber

The record number, starting with 0.

StorageClass

Represents the type of data storage.

StorageSegmentSize

The fixed size of storage segments for this bitfile.

Pad

Pad for 64-bit alignment.

SegmentInfo[HPSS_MAX_DISK_SEGS_PER_MAPREC]

The array of disk segment entries.

HPSS_MAX_DISK_SEGS_PER_MAPREC

The maximum number of entries in a disk map record. The current value is 8.

Clients

The following clients access the data definition:

Chapter 3: Bitfile Server Functions

3-56 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

3.1.34. Class of Service - hpss_cos_md_t

Description

Class of service defines a set of parameters associated with operational and performance characteristics
of bitfiles and associates the parameters with a hierarchy. Each bitfile in HPSS has a COS associated
with it.

Structure use - dynamic memory tables and permanent data base.

Format

The COS has the following format:

typedef struct hpss_cos_md {
unsigned32 COSId;
unsigned32 HierId;
char COSName [HPSS_MAX_OBJECT_NAME];
unsigned64 OptimumAccessSize;
unsigned32 Flags;
unsigned64 MinFileSize;
unsigned64 MaxFileSize;
unsigned32 AccessFrequency;
unsigned32 TransferRate;
unsigned32 AvgLatency;
unsigned32 WriteOps;
unsigned32 ReadOps;
unsigned32 StageCode;
} hpss_cos_md_t;

COSId

The class of service type and indicates which of several classes of service the bitfile is in.

HierId

The identification of the hierarchy in which the bitfile is stored. This in effect points to another structure
that defines the actual hierarchy. The bitfile may reside on tape, on disk, or on both.

COSName [HPSS_MAX_OBJECT_NAME]

The name of the class of service for this bitfile.

HPSS_MAX_OBJECT_NAME

The maximum length for a class of service name. The current value is 32.

OptimumAccessSize

The block size in bytes for this class of service that yields the maximum data transfer rate.

Flags

Used to indicate special options for the class of service. Valid values are:

COS_ENFORCE_MAX_FILE_SIZE Files in COS are not allowed to grow greater than the
max file size for COS.

COS_FORCE_SELECTION User must ask for COS explicity by id or name.

MinFileSize

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-57
Rev. 0

The minimum size in bytes of a bitfile in this class of service.

MaxFileSize

The maximum size in bytes to which the bitfile can grow and remain in this class of service.

AccessFrequency

The expected rate of access for the bitfile.

FREQ_HOURLY

FREQ_DAILY

FREQ_WEEKLY

FREQ_MONTHLY

FREQ_ARCHIVE

TransferRateThe approximate file transfer rate in kilobytes per second.

AvgLatency

The time in seconds from when a request is received by a Storage Server until data actually begins to
transmit. This is typically non-zero for tape media.

WriteOps

The valid write operations for the bitfile.

ReadOps

The valid read operations for the bitfile.

These are the read and write operation bit field flags:

OP_WRITE

OP_APPEND

OP_READ

StageCode

Represents the valid stage codes. These are the valid stage code settings:

COS_STAGE_NO_STAGE

COS_STAGE_ON_OPEN

COS_STAGE_ON_OPEN_ASYNC

COS_STAGE_ON_OPEN_BACKGROUND

Clients

The following clients access the data definition:

Client API, Storage System Management, Storage Server.

Chapter 3: Bitfile Server Functions

3-58 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.1.35. Class of Service Hints - hpss_cos_hints_t

Description

The class of service hints structure assists a client in selecting a COS for a bitfile.

Structure use - dynamic memory tables.

Format

The COS hints has the following format:

typedef struct hpss_cos_hints {
unsigned32 COSId;
char COSName [HPSS_MAX_OBJECT_NAME];
unsigned64 OptimumAccessSize;
unsigned64 MinFileSize;
unsigned64 MaxFileSize;
unsigned32 AccessFrequency;
unsigned32 TransferRate;
unsigned32 AvgLatency;
unsigned32 WriteOps;
unsigned32 ReadOps;
unsigned32 StageCode;
unsigned32 StripeWidth;
u_signed64 StripeLength;
} hpss_cos_hints_t;

COSId

The class of service type and indicates which of several classes of service the bitfile is in.

COSName [HPSS_MAX_OBJECT_NAME]

The name of the class of service for this bitfile.

HPSS_MAX_OBJECT_NAME = 32

The maximum length for a class of service name.

OptimumAccessSize

The block size in bytes for this class of service that yields the maximum data transfer rate.

MinFileSize

The minimum size in bytes of a bitfile in this class of service.

MaxFileSize

The maximum size in bytes to which the bitfile can grow and remain in this class of service.

AccessFrequency

The expected rate of access for the bitfile.

FREQ_HOURLY

FREQ_DAILY

FREQ_WEEKLY

FREQ_MONTHLY

FREQ_ARCHIVE

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-59
Rev. 0

TransferRate

The approximate file transfer rate in kilobytes per second.

AvgLatency

The time in seconds from when a request is received by a Storage Server until data actually begins to
transmit. This is typically non-zero for tape media.

WriteOps

The valid write operations for the bitfile.

ReadOps

The valid read operations for the bitfile.

These are the read and write operation bit field flags:

OP_WRITE

OP_APPEND

OP_READ

StageCode

Indicates which staging option should be selected.

Clients

The following clients access the data definition:

Client API, Storage System Management, Storage Server.

3.1.36. Class of Service Priorities - hpss_cos_priorities_t

Description

The class of service priorities structure assists a client in selecting a COS for a bitfile.

Structure use - dynamic memory tables.

Format

The COS priorities has the following format:

typedef struct hpss_cos_priorities {
unsigned32 COSIdPriority;
unsigned32 COSNamePriority;
unsigned32 OptimumAccessSizePriority;
unsigned32 MinFileSizePriority;
unsigned32 MaxFileSizePriority;
unsigned32 AccessFrequencyPriority;
unsigned32 TransferRatePriority;
unsigned32 AvgLatencyPriority;
unsigned32 WriteOpsPriority;
unsigned32 ReadOpsPriority;
unsigned32 StageCodePriority;
unsigned32 StripeWidthPriority;
unsigned32 StripeLengthPriority

} hpss_cos_priorities_t;

Chapter 3: Bitfile Server Functions

3-60 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

COSIdPriority

The class of service ID priority for the class of service the bitfile should be in.

COSNamePriority

The class of service name priority for this bitfile.

OptimumAccessSizePriority

The priority for the block size for this class of service that yields the maximum data transfer rate.

MinFileSizePriority

The priority for the minimum size in bytes of a bitfile in this class of service.

MaxFileSizePriority

The priority for the maximum size in bytes to which the bitfile can grow and remain in this class of service.

AccessFrequencyPriority

The priority for the expected rate of access for the bitfile.

TransferRatePriority

The priority for the class of service file transfer rate.

AvgLatencyPriority

The class of service priority for the average latency time from request time until data begins to transfer.

WriteOpsPriority

The priority for the valid write operations for the bitfile.

ReadOpsPriority

The priority for the valid read operations for the bitfile.

StageCodePriority

The priority for the desired stage code.

StripeWidthPriority

The priority to be associated with stripe width selection. Stripewidth information comes from the underlying
storage class metadata.

StripeLengthPriority

The priority to be associated with stripe length selection. Stripe length selection comes from the underlying
storage class metadata..

Following are the possible priority values:

NO_PRIORITY

LOWEST_PRIORITY

LOW_PRIORITY

DESIRED_PRIORITY

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-61
Rev. 0

HIGHLY_DESIRED_PRIORITY

REQUIRED_PRIORITY

Clients

The following clients access the data definition:

Client API, Storage System Management, Storage Server.

3.1.37. Owner Record - bfs_owner_rec_t

Description

This structure defines the reverse map entries for a bitfile and indicates which ones are active or null.

Format

The bfs_owner_rec has the following format:

typedef struct bfs_owner_rec {
signed32 RevMapCount;
unsigned32 Pad;
rev_map_t RevMap[BFS_NUM_REV_MAPS];

} bfs_owner_rec_t;

RevMapCount

The number of valid reverse map entries.

Pad

Pad for 64-bit alignment.

RevMap[BFS_NUM_REV_MAPS]

The array of opaque reverse mapping fields supplied by a client.

BFS_NUM_REV_MAPS

The total number of reverse maps in the RevMap array. The current value is 1.

Clients

The following clients access the data definition:

Client API, Storage Server.

3.1.38. Request Attributes - req_attrib_t

Description

This is a structure that describes the attributes or status of a Bitfile Server request.

Structure use - dynamic memory tables.

Format

The req_attrib has the following format:

typedef struct req_attrib {
pthread_mutex_t Mutex;
int WaitCount;
char UserName[HPSS_MAX_USER_NAME];
char HostName[HPSS_MAX_HOST_NAME];

Chapter 3: Bitfile Server Functions

3-62 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

u_signed64 DataLen;
struct timeval StartTime;
struct timeval EndTime;
signed32 ErrorCode;
hpss_object_handle_t BfHandle;
hpssoid_t BfId;

} req_attrib_t;

Mutex

The mutex used to serialize access to this structure.

WaitCount

The count of requests waiting for the same resource.

UserName [HPSS_MAX_USER_NAME]

The login name of the user associated with the request.

HPSS_MAX_USER_NAME

The maximum length of a user name. The current value is 16.

HostName [HPSS_MAX_HOST_NAME]

The text name of the host that the user resides on, where the request came from.

HPSS_MAX_HOST_NAME

The maximum length of a host name. The current value is 64.

DataLen

The total amount of data in bytes to be moved by this request.

StartTime

The time at which the request started processing.

EndTime

The time at which the request completed processing.

ErrorCode

The error code associated with a request if an error occurred.

BfHandle

The bitfile handle and contains the information necessary for the Bitfile Server to find the cached metadata
for the bitfile.

BfId

The ID of the bitfile for the request.

Clients

The following clients access the data definition:

None.

3.1.39. Reverse Map Field - rev_map_t

Description

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-63
Rev. 0

Rev_map is the opaque reverse mapping field supplied by the client. The contents of this field are not
known to the Bitfile Server. For example, this field can be used to map from a bitfile ID to a Name Server
directory ID.

Structure use– dynamic memory tables, API parameters, and permanent data base.

Format

The rev_map has the following format:

typedef struct rev_map {
byte RevMapId [BFS_REV_MAP_LEN];
} rev_map_t;

RevMapId [BFS_REV_MAP_LEN]

The reverse mapping field.

BFS_REV_MAP_LEN

The length of the reverse mapping field. The current value is 32.

Clients

The following clients access the data definition:

Name server, Client API.

3.1.40. Bitfile Cache Entry - bf_cache_entry_t

Description

This structure is the dynamic memory data and control information needed for a bitfile that is in use. If
metadata such as the bitfile descriptor are being updated, the MetaDataLock must be locked before the
update. If other variables or pointers are being updated, the Mutex must be locked.

Structure use - dynamic memory tables.

Format

The bf_cache_entry has the following format:

typedef struct bf_cache_entry bf_cache_entry_t;

struct bf_cache_entry {
bf_cache_entry_t *NextPtr;
bfs_lock_cb_t MetaDataLock;
int CacheState;
unsigned32 Flags;
unsigned32 OpenCount;
bfs_schdl_info_t SchdlInfo
hpss_cos_md_t *COSPtr;
hpss_hier_md_t *HierPtr;
signed32 StorageLevelCount;
bf_descriptor_md_t BfDescriptor;
bf_segments_cache_entry_tBfSegmentsCache[HPSS_MAX_STORAGE_LEVELS];

};

NextPtr

Pointer to the next bitfile cache entry in the chain from the bitfile hash table.

MetaDataLock

Chapter 3: Bitfile Server Functions

3-64 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The lock for metadata such as the bitfile descriptor.

CacheState

The state of the cache.

Flags

The flags variable (not used).

OpenCount

The number of currently active opens for this bitfile.

Schdlinfo

Structure used to schedule and control multiple requests directed at the same bitfile.

COSPtr

Pointer to the Class of Service information.

HierPtr

Pointer to the Hierarchy information

StorageLevelCount

The number of storage levels.

BfDescriptor

The copy of the bitfile descriptor.

BfSegmentsCache [HPSS_MAX_STORAGE_LEVELS]

The array that caches information about all levels in the storage hierarchy.

HPSS_MAX_STORAGE_LEVELS

The maximum number of storage levels. The current value is 5.

Clients

The following clients access the data definition:

None.

3.1.41. Bitfile Cache Hash - bf_cache_hash_t

Description

This structure is used to optimize searches for objects pointed at by handles. It stores hash entries to
index into arrays of pointers It also allows a safe address (not pointing to memory obtained via malloc) to
be used in handles.

Structure use - dynamic memory tables.

Format

The bf_cache_hash has the following format:

typedef struct bf_cache_hash {
pthread_mutex_t Mutex;
bf_cache_entry_t *HashPtr[BFS_MAX_BF_CACHE_HASH];

} bf_cache_hash_t;

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-65
Rev. 0

Mutex

Used to serialize access to this table.

HashPtr [BFS_MAX_BF_CACHE_HASH]

An array of pointers to hash chains of bitfile cache entries.

BFS_MAX_BF_CACHE_HASH

The maximum number of entries in the cache hash. The current value is 128.

Clients

None.

3.1.42. Bitfile Segments Cache Entry - bf_segments_cache_entry_t

Description

This structure contains cached information about the bitfile segments associated with a given level in the
storage hierarchy.

Structure use - dynamic memory tables.

Format

The bf_segments_cache_entry has the following format:

typedef struct bf_segments_cache_entry {
unsigned32 StorageClass;
unsigned32 StorageLevel;
unsigned32 SegmentCount;
unsigned32 Flags;
hpss_sclass_md_t *SClassPtr;
bfs_lock_cb_t SegmentsLock;
void *BfSegmentsPtr;
bf_disk_map_t *DiskMapPtr;
current_segment_info_t CurSegInfo;

} bf_segments_cache_entry_t;

StorageClass

The class of data storage used for the bitfile segments.

StorageLevel

The level in the hierarchy represented by this cache entry.

SegmentCount

Count of the number of segments in the bitfile at this level.

Flags

Flag settings

BFS_BITFILE_SEGMENTS_LOCK

BFS_BITFILE_CHECK_CURRENT_SEG

SClassPtr

Points to the storage class information associated with data at this level.

Chapter 3: Bitfile Server Functions

3-66 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

SegmentsLock

Used to lock out access to bitfile segments.

BfSegmentsPtr

Pointer to the list of the current segments for the bitfile.

DiskMapPtr

The address of the disk map.

CurSegInfo

The current allocate segment information, used by bfs_Write.

Clients

The following clients access the data definition:

None.

3.1.43. Storage Segment Delete Entry - sseg_delete_entry_t

Description

This structure defines a storage segment delete entry. It is used in tape processing to generate a list of
storage segments that have been overwritten and are candidates for deletion.

Structure use - dynamic memory tables.

Format

The sseg_delete_entry has the following format:

typedef struct sseg_delete_entry {
struct sseg_delete_entry *NextPtr;
hpssoid_t SSegmentId;
uuid_t SSId;

} sseg_delete_entry_t;

NextPtr

Pointer to the next storage segment delete entry on the list.

SSegmentId

The storage segment ID.

SSId

The ID of the Storage Server containing the segment.

Clients

The following clients access the data definition:

None.

3.1.44. Current Bitfile Segment Information - current_segment_info_t

Description

This structure defines current segment information used by bfs_Write , for tape only.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-67
Rev. 0

Structure use - dynamic memory tables.

Format

The current_segment_info has the following format:

typedef struct current_segment_info {
hpssoid_t CurrentSSSegId;
u_signed64 CurrentSSSegOffset;
unsigned32 Flags;
bf_tape_segment_cached_t *NewBfSegmentsPtr;
sseg_delete_entry_t *SSDeleteListPtr;
u_signed64 NextSSSegOffset;
signed32 CurrentBlockSize;
} current_segment_info_t;

CurrentSSSegId

The current storage segment doing allocate from.

CurrentSSSegOffset

The next write position in the segment at the start of a write.

Flags

Control flags.

NewBfSegmentsPtr

Pointer to the list of new bitfile segments.

SSDeleteListPtr

Pointer to the list of storage segments to delete.

NextSSSegOffset

The next position to write in the segment.

CurrentBlockSize

The blocksize associated with the current segment.

Clients

The following clients access the data definition:

None.

3.1.45. Bitfile Disk Map - bf_disk_map_t

Description

This structure defines a record which caches the map allocated space for a bitfile stored on disk.

Structure use - dynamic memory tables.

Format

The bf_disk_map has the following format:

typedef struct bf_disk_map {
hpssoid_t BfId;
unsigned32 StorageClass;
unsigned32 StorageSegmentSize;

Chapter 3: Bitfile Server Functions

3-68 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

unsigned32 Flags;
unsigned32 EntryCount;
bf_disk_region_md_t *DiskSegmentsPtr;

} bf_disk_map_t;

BfId

The bitfile ID.

StorageClass

The storage class.

StorageSegmentSize

The fixed storage segment size for this bitfile.

Flags

The status flags.

EntryCount

The number of entries.

DiskSegmentsPtr

The address of the disk segments list.

Clients

The following clients access the data definition:

None.

3.1.46. Bitfile Server Connect Context - bfs_connect_context_t

Description

This structure provides the link from the hpss_connect_context to the bf_open_context structure.

Structure use - dynamic memory tables.

Format

The bfs_connect_context has the following format:

typedef struct bfs_connect_context {
pthread_mutex_t Mutex;
long Flags;
bf_open_context_hdr_t *BfOpenContextPtr;

} bfs_connect_context_t;

Mutex

The type of data storage used for the bitfile segments.

Flags

The connect context flags.

BfOpenContextPtr

Pointer to the open context structure.

Clients

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-69
Rev. 0

The following clients access the data definition:

None.

3.1.47. HPSS Segment List - hpss_segment_list_t

Description

This structure defines the storage segment list.

Structure use - parameter on bfs_Migrate and bfs_Purge calls

Format

The hpss_segment_list has the following format:

typedef struct hpss_segment_list {
unsigned32 Flags;
unsigned32 Count;
hpss_segment_desc_t *SegDescPtr;

} hpss_segment_list_t;

Flags

The storage segment list flags.

Count

The number of storage segment descriptor entries stored in the list.

SegDescPtr

Pointer to the storage segment descriptor list.

Clients

The following clients access the data definition:

MPS.

3.1.48. HPSS Segment Descriptor - hpss_segment_desc_t

Description

This structure defines the storage segment descriptor.

Structure use - parameter to bfs_Migrate, bfs_Purge

Format

The hpss_segment_desc has the following format:

typedef struct hpss_segment_desc {
struct hpss_segment_desc *NextPtr;
unsigned32 Flags;
hpssoid_t SSegId;

} hpss_segment_desc_t;

NextPtr

Next descriptor on list

Flags

Chapter 3: Bitfile Server Functions

3-70 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The storage segment list flags.

SSegId

ID of the storage segment.

Clients

The following clients access the data definition:

MPS.

3.1.49. HPSS Background Stage CallBack Structure - bfs_callback_addr_t

Description

This structure defines the structure containing the address information for where to send the response
from a background stage request.

Format

The bfs_callback_addr has the following format:

typedef struct bfs_callback_addr {
signed32 addr;
signed32 port;
signed32 family;
signed32 id;

} bfs_callback_addr_t;

addr

Host address.

port

Port number.

family

Address family.

id

ID returned from the request.

Clients

The following clients access the data definition:

Client API.

3.2. Other Interfaces (OFD and Request list)

These interfaces are for the Open File Descriptor (OFD) manager, which uses the Encina Structured File
System (SFS) to make OFDs reusable.

Also, there are interfaces for the Request List manager, which contains general purpose structures for
managing the list that contains server request state. Each element in the list will contain information about
a request that is currently being processed or has recently been processed by the server.

Both of these sub-systems are used internally in the Bitfile Server and in the Storage Server.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-71
Rev. 0

3.2.1. hpss_InitOfdMgr

Purpose
Initialize the OFD manager.

Syntax

#include hpss_ofd.h

signed32
hpss_InitOfdList ();

Description
Initialize the OFD header for the list of hpss_ofd_t control blocks. Initialize the mutex that
serializes access to the OFD free list.

Parameters
None.

Return Values / Error Conditions
Zero indicates that the function was successful.

A value of -1 indicates an error. The system errno parameter will be set to

EINVAL out of memory for initialization,

EAGAIN out of necessary resources.

Related Information
hpss_GetOfd, hpss_FreeOfd, hpss_CloseAllOfds.

Clients
BFS, SS.

Notes
None.

Chapter 3: Bitfile Server Functions

3-72 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.2.2. hpss_GetOfd

Purpose
Acquire an OFD for use by the caller.

Syntax

#include hpss_ofd.h
signed32
hpss_GetOfd (

hpss_ofd_t **OfdPtr, /* OUT */
char* FileNamePtr, /* IN */
unsigned32 Flags /* IN */
);

Description
Acquire or allocate an OFD to be used by the caller for Encina SFS calls. The OFD pointer is
returned by reference in the function argument list.

In searching for a reusable OFD on the free-list, we have to find a match with
entry_ptr.SfsFileName and the correct Flags attributes.. It must be opened for the file we are
accessing. Check the free chain first to see if an already open OFD is available. If not, then
allocate one, send an RPC to Encina SFS to open it, and return it. Different threads can reuse an
OFD if the SfsFileName and the Flags match and if the former transaction is complete. These
OFD reuse conditions are all handled automatically.

Parameters
OfdPtr is a pointer reference to the OFD pointer returned.

FileNamePtr is the name of the OFD file.

Flags indicate what type of OFD to allocate and various attributes of the
OFD. The flags can be used to select a transactional of non-
transactional ofd and to set any attribute that is supported for
ofds.

Return Values / Error Conditions
The pointer to the acquired OFD is returned by the reference OfdPtr argument.

Zero indicates that the function was successful.

OFD_SUCCESS successful,

OFD_BAD_FILENAME bad filename

OFD_MALLOC_ERROR malloc() error

HPSS_EMUTEX failure of mutex operation

OFD_OPEN_ERROR OFD SFS-file open error

Related Information
hpss_InitOfdMgr, hpss_FreeOfd, hpss_CloseAllOfds.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-73
Rev. 0

Clients
HPSS servers including BFS and SS.

Notes

Chapter 3: Bitfile Server Functions

3-74 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.2.3. hpss_FreeOfd

Purpose
Place an already open OFD on the free list (reuse list), or dispose of a bad OFD.

Syntax
#include hpss_ofd.h

signed32
hpss_FreeOfd (

hpss_ofd_t *OfdPtr, /* IN */
signed32 OfdStatus); /* IN */

Description
Free an OFD for reuse by placing the OFD on the free list. If the OfdStatus argument indicates a
bad OFD, then dispose of the OFD.

Parameters
OfdPtr Address of the OFD returned to the free list.

OfdStatus Marks a bad OFD for disposal. OFD_BAD = -1.

Return values / Error conditions
Zero indicates that the function was successful.

OFD_FAILURE failure of OFD operation

HPSS_EMUTEX failure of mutex operation

See also
hpss_InitOfdList, hpss_GetOfd, hpss_CloseAllOfds.

Clients
Bitfile Server, Storage Server.

Notes
None.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-75
Rev. 0

3.2.4. hpss_CloseAllOfds

Purpose
 Close all open OFDs on the free list; close all OFDs as they return from use.

Syntax
#include hpss_ofd.h

signed32
hpss_CloseAllOfds ();

Description
Close all open OFDs found on the free list. Set a flag that causes all OFDs returned to
hpss_FreeOfd() to be closed as well.

Parameters
None.

Return values / Error conditions
Zero (OFD_SUCCESS) indicates that the function was successful.

HPSS_EMUTEX = -2005; failure of mutex operation

See also
hpss_CleanupOfds

Clients
Bitfile Server, Storage Server.

Notes
This closes only ofds that are in the ofd pool. Any ofd that has not been put back into the pool is
the responsibility of the application.

Chapter 3: Bitfile Server Functions

3-76 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.2.5. hpss_CleanupOfds

Purpose
Close ofds left open by prior invocation of server.

Syntax

#include hpss_ofd.h
signed32
hpss_CleanupOfds(
char **server_files
);

Description
Called by a server at startup time to cleanup any ofds left open by a prior invocation of the server
on the files that are passed int the paramater list. The server should be labeling ofds to use this.

Parameters
server_files-> list of character strings that provide the names of the SFS files

that should be processed.

Return Values / Error Conditions
Zero (OFD_SUCCESS) indicates that the function was successful.

HPSS_EMUTEX failure of mutex operation

Related Information
hpss_CloseAllOfds

Clients
HPSS server including BFS and SS.

Notes

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-77
Rev. 0

3.2.6. hpss_InitOfdList

Purpose
Initialize the OFD list header.

Syntax
#include hpss_ofd.h

signed32
hpss_InitOfdList ();

Description
Initialize the OFD header for the list of hpss_ofd_t control blocks. Initialize the mutex that
serializes access to the OFD free list.

Parameters
None.

Return values / Error conditions
Zero indicates that the function was successful.

A value of -1 indicates an error. The system errno parameter will be set to

EINVAL Out of memory for initialization.

EAGAIN Out of necessary resources.

See also
hpss_GetOfd, hpss_FreeOfd, hpss_CloseAllOfds.

Clients
Bitfile Server, Storage Server.

Notes
None.

Chapter 3: Bitfile Server Functions

3-78 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.2.7. hpss_ReqListDeleteEntry

Purpose
Remove a request list entry.

Syntax
#include hpss_req_list.h

signed32
hpss_ReqListDeleteEntry (

hpss_reqlist_t *ListPtr, /* IN */
hpss_reqlist_entry_t *EntryPtr); /* IN */

Description
Delete an entry from the request list. Lock the list. Scan the list to find the node previous to the
EntryPtr. Unlink the entry to be deleted. Decrement the list entries count. Unlock the list. Free
the storage for EntryPtr.

Parameters
ListPtr Pointer to the request list from which the entry is to be deleted.

EntryPtr Pointer to the entry to be deleted.

Return values / Error conditions
Zero (HPSS_E_NOERROR) indicates that the function was successful.

HPSS_REQ_NULL_ENTRY Entry argument contained a NULL pointer.

Error variable Mutex lock or unlock errors. The system errno parameter will be
set to EINVAL or EAGAIN.

HPSS_REQ_ENTRY_NOT_FOUND
The argument EntryPtr was not found in the request-list
indicated by ListPtr.

See also
hpss_ReqListInit, hpss_ReqListInsertEntry, hpss_ReqListFindReqId,
hpss_ReqListNextEntry, hpss_ReqListSetState.

Clients
Bitfile Server, Storage Server.

Notes
None.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-79
Rev. 0

3.2.8. hpss_ReqListFindReqId

Purpose
Find the entry that corresponds to the ReqId.

Syntax
#include hpss_req_list.h

hpss_reqlist_entry_t *
hpss_ReqListFindReqId (

hpss_reqlist_t *ListPtr, /* IN */
signed32 ReqId); /* IN */

Description
Find an entry on the request list that corresponds to a request identifier. This routine can be used
to monitor state for a particular request.

Parameters
ListPtr Pointer to the request list in which to find the ReqId.

ReqId ID number for the request.

Return values / Error conditions
A NULL return value means the list was traversed and ReqId was not found; or, there was a
mutex lock/unlock error.

Otherwise, a pointer to the entry with the desired ReqId is returned.

See also
hpss_ReqListInit, hpss_ReqListInsertEntry, hpss_ReqListDeleteEntry,
hpss_ReqListNextEntry, hpss_ReqListSetState.

Clients
Bitfile Server, Storage Server.

Notes
None.

Chapter 3: Bitfile Server Functions

3-80 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.2.9. hpss_ReqListInit

Purpose
Initialize the request list.

Syntax
#include hpss_req_list.h

signed32
hpss_ReqListInit (

hpss_reqlist_t *ListPtr); /* IN */

Description
This is the initialization routine to set up a request list. Initialize the members of the hpss_reqlist
structure in the header of the request list. Initialize the mutex access protection for the request
list.

Parameters
ListPtr Pointer to the request list to be initialized.

Return values / Error conditions
Zero indicates that the function was successful.

A value of -1 indicates an error. The system errno parameter will be set to EINVAL or EAGAIN.

See also
hpss_ReqListInsertEntry, hpss_ReqListDeleteEntry, hpss_ReqListFindReqId,
hpss_ReqListNextEntry, hpss_ReqListSetState.

Clients
Bitfile Server, Storage Server.

Notes
None.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-81
Rev. 0

3.2.10. hpss_ReqListInsertEntry

Purpose
Add a new entry to the request list.

Syntax
#include hpss_req_list.h

hpss_reqlist_entry_t *
hpss_ReqListInsertEntry (

hpss_reqlist_t *ListPtr, /* IN */
void *Context, /* IN */
signed32 InitialState, /* IN */
signed32 ReqCode, /* IN */
signed32 ReqId, /* IN */
void *ServerSpecific, /* IN */
pthread_t ThreadId); /* IN */

Description
Insert a new request entry at the front of the list and return a pointer to the entry. Use malloc to
create a new request list entry node. Initialize its contents from function argument parameters.
Lock the list; link the new node in at the front of the list; increment the node count; unlock the list.

Parameters
ListPtr Pointer to the request list.

Context Pointer to the context of the request.

InitialState Used to set the initial state field of the request.

ReqCode Name or type of request.

ReqId ID for the request.

ServerSpecific Pointer to the server-specific state.

ThreadId ID of the thread doing the processing.

Return values / Error conditions
NULL Indicates that the new request-list node entry could not be

inserted.

Other values Indicates that the new entry was inserted; a pointer to the new
entry is returned.

See also
hpss_ReqListInit, hpss_ReqListDeleteEntry, hpss_ReqListFindReqId,
hpss_ReqListNextEntry, hpss_ReqListSetState.

Clients
Bitfile Server, Storage Server.

Notes
None.

Chapter 3: Bitfile Server Functions

3-82 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.2.11. hpss_ReqListNextEntry

Purpose
Get the next entry from the request list.

Syntax
#include hpss_req_list.h

hpss_reqlist_entry_t *
hpss_ReqListNextEntry (

hpss_reqlist_t *ListPtr /* IN */
hpss_reqlist_entry_t *EntryPtr); /* IN */

Description
Find the next entry on the request list following the argument EntryPtr. If the argument EntryPtr is
NULL, then return the head of the list.

Parameters
ListPtr Pointer to the request list to initialize.

EntryPtr Pointer to the entry previously returned, the list entry immediately
preceding the entry returned by the routine.

Return values / Error conditions
A NULL return value means that EntryPtr was the last node on the request list. Otherwise, a
pointer to the next entry on the request list is returned.

See also
hpss_ReqListInit, hpss_ReqListInsertEntry, hpss_ReqListDeleteEntry,
hpss_ReqListFindReqId, hpss_ReqListSetState.

Clients
Bitfile Server, Storage Server.

Notes
This routine does NOT check the validity of the ListPtr or EntryPtr arguments.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-83
Rev. 0

3.2.12. hpss_ReqListSetState

Purpose
Set the state for the request EntryPtr.

Syntax
#include hpss_req_list.h

signed32
hpss_ReqListSetState(

hpss_reqlist_t *ListPtr /* IN */
hpss_reqlist_entry_t *EntryPtr, /* IN */
signed32 ReqState); /* IN */

Description
Set the state for the request EntryPtr to the value of the argument ReqState.

Parameters
ListPtr Pointer to the request list.

EntryPtr Pointer to the entry for which state is to be set.

ReqState The new state for request.

Return values / Error conditions
Zero (HPSS_E_NOERROR = 0)

Indicates that the function was successful.

HPSS_REQ_NULL_ENTRY EntryPtr argument is NULL.

HPSS_REQ_ENTRY_NOT_FOUND
The EntryPtr argument was not found in the request-list.

HPSS_EMUTEX Mutex error locking or unlocking list.

HPSS_REQ_INVALID_STATE ReqState argument is out of range.

See also
hpss_ReqListInit, hpss_ReqListInsertEntry, hpss_ReqListDeleteEntry,
hpss_ReqListFindReqId, hpss_ReqListNextEntry.

Clients
Bitfile Server, Storage Server.

Notes
None.

Chapter 3: Bitfile Server Functions

3-84 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

3.3. Other Data Definitions (OFD and request list)

This section describes the data definitions used by the Open File Descriptor (OFD) manager and the
Request List manager.

A data definition may be represented by constructs such as data structures and constants. For each data
definition, a description, format (including parameter descriptions), and clients which access the data
definition are provided.

3.3.1. HPSS Open File Descriptor (OFD) - hpss_ofd_t

Description

hpss_ofd is the control block used to get a handle on an open metadata file (Encina SFS file). This
structure constitutes the node entry in the OFD free list, the list of OFDs that are available for reuse.

Structure use– dynamic memory tables.

Format

The hpss_ofd has the following format:

typedef struct hpss_ofd {
char OfdVerify[OFD_STR_LEN];
struct hpss_ofd *NextPtr;
char SfsFileName[CELL_NAME_LEN];
signed32 Status;
pthread_t ThreadId;
sfs_ofd_t Ofd;
signed32 TranType;

} hpss_ofd_t;

OfdVerify[OFD_STR_LEN]

The data-integrity-check string field. It is set to "hpss_ofd" when an hpss_ofd node is created.

OFD_STR_LEN

The length of the data-integrity-check string field. The current value is 16.

NextPtr

Pointer to the next entry on the list of free OFDs.

SfsFileName[CELL_NAME_LEN]

The SFS file name associated with the OFD.

CELL_NAME_LEN

The (DCE) maximum length of the SFS file name associated with an OFD. The current value is 1024.

Status

The flag to indicate current OFD status:

HPSS_OFD_FREE

HPSS_OFD_IN_USE

ThreadId

The ID of the thread using the OFD.

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-85
Rev. 0

Ofd

The SFS OFD (open file descriptor), similar to a UNIX file descriptor).

TranType

Indicates whether the OFD is transactional or non-transactional.

HPSS_OFD_TRANSACTIONAL

HPSS_OFD_NON_TRANSACTIONAL

Clients

The following clients access the data definition:

Bitfile server, Storage server.

3.3.2. HPSS Open File Descriptor List Header - hpss_ofd_hdr_t

Description

The OFD header structure, hpss_ofd_t, designates a free list (Encina SFS OFD reuse list) of hpss_ofd_t
node entries.

Structure use– dynamic memory tables.

Format

The hpss_ofd_hdr has the following format:

typedef struct hpss_ofd_hdr {
pthread_mutex_t Mutex;
hpss_ofd_t *HeadPtr;
hpss_ofd_t *TailPtr;
unsigned TotalCount;
unsigned InUseCount;
unsigned FreeCount;

} hpss_ofd_hdr_t;

Mutex

The DCE mutex serial access protection for the free list of OFDs.

HeadPtr

Pointer to the first entry on the free list.

TailPtr

Pointer to the last entry on the free list.

TotalCount

The total number of OFDs, both allocated and free, to be re-used.

InUseCount

The number of OFDs in use or allocated.

FreeCount

The number of OFDs available on the free list for re-use.

Clients

Chapter 3: Bitfile Server Functions

3-86 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The following clients access the data definition:

Bitfile server, Storage server.

3.3.3. Request List - hpss_reqlist_t

Description

This general purpose structure is for managing the list that will contain server request state. Each
element in the list will contain information about a request that is currently being processed or has recently
been processed by the server. This structure is the head of the request list queue. It keeps track of the
entries in the list and has access protection for the list.

Structure use - dynamic memory tables.

Format

The hpss_reqlist has the following format:

typedef struct hpss_reqlist {
pthread_mutex_t Mutex;
hpss_reqlist_entry_t *HeadPtr;
unsigned32 Count;

} hpss_reqlist_t;

Mutex

The mutex used to serialize access to the request list.

HeadPtr

Pointer to the first request entry on the list.

Count

The count of the number of entries on the request list.

Clients

The following clients access the data definition:

The request list is used internally by servers.

3.3.4. Request List Entry - hpss_reqlist_entry_t

Description

This is the entry that is queued if a request is being processed or is waiting. It contains the current state
for a request. The ReqId and Context fields may be used to identify the request. The State field
contains a value that describes the current state of the request. The ServerSpecific field points to server
specific information.

Structure use - dynamic memory tables.

Format

The hpss_reqlist_entry has the following format:

typedef struct hpss_reqlist_entry hpss_reqlist_entry_t;

struct hpss_reqlist_entry {
hpss_reqlist_entry_t *NextPtr;
void *Context;

Chapter 3: Bitfile Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 3-87
Rev. 0

signed32 ReqCode;
signed32 ReqId;
signed32 State;
void *ServerSpecific;
pthread_t ThreadId;

};

NextPtr

Pointer to the next request list entry in the list.

Context

Pointer to the context of the request; the DCE context handle. The Context could be used for a
ConnectHandlePtr.

ReqCode

The code that defines the name or type of the request.

BFS_CREATE_REQ

BFS_OPEN_REQ

BFS_CLOSE_REQ

BFS_UNLINK_REQ

BFS_READ_REQ

BFS_WRITE_REQ

BFS_SET_ATTRIB_BF_REQ

BFS_SET_ATTRIB_BF_O_REQ

BFS_GET_ATTRIB_BF_REQ

BFS_GET_ATTRIB_BF_O_REQ

BFS_SET_ATTRIB_BFS_REQ

BFS_GET_ATTRIB_BFS_REQ

ReqId

is the unique integer that identifies a particular request.

State

is the generic request state.

ServerSpecific

is the server-specific information.

ThreadId

is the identification of the thread doing the processing.

Clients

Chapter 3: Bitfile Server Functions

3-88 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The following clients access the data definition:

This structure is used internally by servers.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-1
Rev. 0

4. Storage Server Functions

This chapter specifies the Storage Server programming interface. Specifically, the following information is
provided:

Application Programming Interfaces (APIs)

Data Definitions

4.1. API Functions

This section describes all APIs which are provided for use by another HPSS subsystem or by a client
external to HPSS. The API interface specification includes the following information:

Name

Syntax

Description

Parameters

Return Values

Error Conditions

Related Information

Clients

Notes

Chapter 4: Storage Server Functions

4-2 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.1. ss_BeginSession

Purpose
Start a Storage Server session.

Syntax
#include "ss_interface.h"

signed32
ss_BeginSession (

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* OUT */
signed32 ReqstID, /* IN */
trpc_status_t *RPCStatus); /* OUT */

Description
The ss_BeginSession function starts a Storage Server session for the caller. A session is used
to group a set of Storage Server requests requests with the resources they use. The resources
used by the requests share state and compete with resources owned by other sessions on a
session by session basis. The purpose of sessions is to provide a mechanism to optimize media
mounts and unmounts, and to recover the use of resources allocated to the session.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session The session handle returned by the function that is to be used in
subsequent functions to identify the session.

ReqstID User supplied request identifier.

RPCStatus A pointer to a returned RPC status code

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Connection handle is invalid.

HPSS_EFAULT DCE utility failure.

HPSS_ENOMEM Server memory exhausted.

See also
ss_EndSession.

Clients
BitFile Server.

Storage System Manager

Notes

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-3
Rev. 0

This is a non-transactional function.

Chapter 4: Storage Server Functions

4-4 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.2. ss_EndSession

Purpose
End a Storage Server session.

Syntax
#include "ss_interface.h"

signed32
ss_EndSession (

rpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_hande_t *Session, /* IN */
unsigned32 Options, /* IN */
signed32 ReqstID) /* IN */
trpc_status_t *RPCStatus); /* OUT */

Description
ss_EndSession terminates a Storage Server session. Resources associated with the session
are released and made available to competing sessions. Storage maps reserved by the session
are returned to free state, allowing space to be allocated from the virtual volumes. Mounted
volumes are unmounted or transferred to other sessions waiting to use them.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Options Option flags that control details of the termination of the session.

The SS_FORCE_TAPE_DISMOUNT flag in the Options field
forces the tape storage server to dismount all tapes owned by the
session immediately. Without this option, tapes are dismounted
after a period of time during which they may be transferred to
other sessions requesting them.

Session The session handle that identifies the session to be terminated.

ReqstID User supplied request identifier.

RPCStatus A pointer to a returned RPC status code.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Connection handle is invalid.

HPSS_EINVAL Session handle is invalid.

See also
ss_BeginSession.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-5
Rev. 0

Clients
Bitfile Server, Storage System Manager.

Notes
This is a non-transactional function.

This function does not block. If the session is in use when this function is called, the function will
return immediately without error. The session will no longer be valid if used in any subsequent
server functions, but will remain active in the server until the function using the session completes.
The session will then be ended.

Options that are available at this time are limited to the SS_FORCE_TAPE_DISMOUNT option. If
this option is selected, tapes assigned to the session will be dismounted immediately, without
waiting for another session to pick them up.

When ss_EndSession is called, the session handle is immediately invalididated, making all
future references to the session impossible. The function then carries out a number of clean-up
activities and returns when all server data structures related to the session have been deleted or
otherwise processed.

Chapter 4: Storage Server Functions

4-6 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.3. ss_GetStorageClassStats

Purpose
Retrieve current information about storage classes managed by the server

Syntax
#include "ss_interface.h"

signed32
ss_GetStorageClassStats(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID, /* IN */
ss_sclass_array_t **Stats, /* IN */
trpc_status_t *RPCStatus); /* OUT */

Description
The ss_GetStorageClassStats function returns a list of storage classes managed by the server.
Each element of the list contains information about the amount of storage space in the class and
how much of it is free.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

Stats A pointer to a pointer containing a variable length array
containing the storage class statistics.

RPCStatus A pointer to a returned RPC status code.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_EMMREAD Metadata Manager failure

HPSS_ENOMEM Server heap is exhausted.

HPSS_ESYSTEM Encina transactional system failure. System log will contain more
information about system failure.

See also
None.

Clients
Storage System Manager.

Notes
This is a non-transactional function.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-7
Rev. 0

This function should be called with Stats pointing to a null pointer to a ss_sclass_array_t
structure. The function builds a list of storage class statistics in an ss_sclass_array_t structure
and points to it with *Stats. The caller should not pass a structure to the function.

The ss_sclass_array_t structure contains a conformant array (variable length array) of
ss_sclass_t elements, and a length field (number of elements in the conformant array).

When the caller has finished processing the ss_sclass_array_t structure, the memory space it
occupies should be returned to the heap by calling "free" for each element of the list.

Chapter 4: Storage Server Functions

4-8 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.4. ss_GetWaitingEvents

Purpose
Retrieve a list of events the server is waiting on

Syntax
#include "ss_interface.h"

signed32
ss_GetWaitingEvents(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID, /* IN */
ss_event_array_t **Events, /* IN */
trpc_status_t *RPCStatus); /* OUT */

Description
The ss_GetWaitingEvents function returns a list of blocking events the server is waiting on. The
possible events are pre-determined by the server and cannot be changed by a client.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

Events A pointer to a pointer to an ss_event_array_t structure that
contains the list of waiting events.

RPCStatus A pointer to a returned RPC status code.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOMEM Server heap is exhausted.

See also
None.

Clients
Storage System Manager.

Notes
This is a non-transactional function. If the caller wants information about errors encountered by
the RPC mechanism, an appropriate error variable should be added to the calling sequence with
the ss_interface.tacf file.

This function should be called with Events pointing to a null pointer to an ss_event_array_t
structure. The function builds a list of ss_event_rec_t elements in an ss_event_array_t
structure and points to it with *Events. The caller should not pass a structure to the function.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-9
Rev. 0

The ss_event_array_t structure contains a conformant array (variable length array) of
ss_event_rec_t elements, and a length field (number of elements in the conformant array).

When the caller has finished processing the ss_event_rec_t elements, their memory space
should be returned to the heap by calling "free" on *Events.

Chapter 4: Storage Server Functions

4-10 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.5. ss_MapCreate

Purpose
Create a storage space map for a virtual volume.

Syntax
#include "ss_interface.h"

signed32
ss_MapCreate(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID, /* IN */
hpssoid_t *VVID, /* IN */
u_signed64 NumBytes, /* IN */
storage_class_id_t SCID); /* IN */

Description
The ss_MapCreate function creates a storage space map for the given virtual volume.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

VVID The object identifier of the virtual volume to create the map for.

NumBytes The byte size of the virtual volume.

SCID The Storage Class ID.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Connection handle is invalid.

HPSS_ENOENT Virtual volume does not exist.

HPSS_EEXIST Virtual volume already mapped.

HPSS_EPERM Virtual volume has more than one owner.

HPSS_EINVAL Input parameter invalid.

HPSS_EMMREAD Error reading metadata file.

HPSS_EMMUPDATE Error updating metadata file.

HPSS_EMMINSERT Error inserting record into metadata file.

See also

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-11
Rev. 0

ss_MapDelete.

Clients
Storage System Manager.

Notes
Virtual volume must exist before the map is created.

One map per Virtual Volume.

NumBytes must equal the estimated Virtual Volume size.

A space map must be created for a Virtual Volume before Storage Segments can be created.

The disk Storage Server includes a bit map with the storage map that maps each virtual volume
block on the disk.

Chapter 4: Storage Server Functions

4-12 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.6. ss_MapDelete

Purpose
Delete the storage space map for a virtual volume.

Syntax
#include "ss_interface.h"

signed32
ss_MapDelete(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID, /* IN */
hpssoid_t *VVID); /* IN */

Description
The ss_MapDelete function deletes a storage space map for the specified virtual volume.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

VVID The object identifier of the virtual volume to delete the map for.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT Free space map does not exist.

HPSS_ENOMEM Internal server memory failure.

HPSS_ECONFLICT Map still has active segments.

HPSS_EMMREAD Error reading metadata file.

HPSS_EMMUPDATE Error updating metadata file.

HPSS_EMMDELETE Error deleting a record from a metadata file.

See also
ss_MapCreate.

Clients
Storage System Manager.

Notes
All storage segments must be deleted from the map before attempting to delete the map.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-13
Rev. 0

4.1.7. ss_MapGetAttrs

Purpose
Get the attributes of a virtual volume storage space map.

Syntax
#include "ss_interface.h"

signed32
ss_MapGetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID, /* IN */
hpssoid_t *VVID, /* IN */
ss_map_attr_t *MapAttrOut, /* OUT */
rpc_status_t *RPCStatus); /* OUT */

Description
The ss_MapGetAttrs function returns the attributes of a virtual volume storage map.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

VVID The object identifier of the virtual volume whose map is to be
returned.

MapAttrOut The returned storage map.

RPCStatus A pointer to a returned RPC status code.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Connection handle is invalid.

HPSS_ENOENT Free space map does not exist.

HPSS_EMMREAD Error reading metadata file.

See also
ss_MapSetAttrs.

Clients
Storage System Manager.

Notes
None.

Chapter 4: Storage Server Functions

4-14 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.8. ss_MapSetAttrs

Purpose
Set the attributes of a virtual volume storage space map.

Syntax
#include "ss_interface.h"

signed32
ss_MapSetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID, /* IN */
u_signed64 InSelectBitmap, /* IN */
ss_map_attr_t *InMapAttr, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
ss_map_attr_t *OutMapAttr); /* OUT */

Description
The ss_MapSetAttrs function sets the attributes of a virtual volume storage map.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

InSelectBitmap Bit flags that select the attribute(s) to change.

InMapAttr A pointer to the storage map attribute record which contains the
characteristics to set.

OutSelectBitmap Bit flags that report attributes changed in OutMapAttr.

OutMapAttr A pointer to the storage map attribute record which returns the
characteristics of the storage map.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT Free space map does not exist.

HPSS_EINVAL Input parameter invalid.

HPSS_EMMREAD Metadata Manager failure.

HPSS_EUPDATE Metadata Manager failure.

HPSS_ESYSTEM Transaction manager failure.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-15
Rev. 0

See also
ss_MapGetAttrs.

Clients
Storage System Manager.

Notes
None.

Chapter 4: Storage Server Functions

4-16 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.9. ss_PVCreate

Purpose
Create a physical volume.

Syntax
#include "ss_interface.h"

signed32
ss_PVCreate(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID, /* IN */
pv_attr_t *PVAttrIn, /* IN */
pv_attr_t *PVAttrOut); /* OUT */

Description
The ss_PVCreate function creates a physical volume. The attributes of the new physical volume
are input through a physical volume attribute record.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

PVAttrIn A pointer to a physical volume attribute record which contains the
characteristics of the physical volume to be created.

PVAttrOut A pointer to a physical volume attribute record which contains the
characteristics of the created physical volume.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT PVL does not know about the volume.

HPSS_EEXIST Physical Volume already exists.

HPSS_EINVAL Input parameter error.

HPSS_EFAULT DCE or environment error.

HPSS_EOWNER Bad owner attributes.

HPSS_EMMINSERT Metadata Manager failure.

HPSS_ESYSTEM Transaction manager error.

See also

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-17
Rev. 0

ss_PVDelete.

Clients
Storage System Manager.

Notes
A Physical volume entry is the building block for all other objects in the Storage Server. All other
objects stored by the SS are built from Physical Volumes.

The PVL must have cataloged the physical volume before attempting to create it in the Storage
Server.

Fields that may be set when creating a physical volume are listed in the pv_attr_t data structure
definition.

Chapter 4: Storage Server Functions

4-18 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.10. ss_PVDelete

Purpose
Delete a physical volume.

Syntax
#include "ss_interface.h"

signed32
ss_PVDelete(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID, /* IN */
char *PVName); /* IN */

Description
The ss_PVDelete function deletes a physical volume.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

PVName The unique name of the physical volume.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT PVL does not know about the volume.

HPSS_EINUSE Physical Volume is active doing I/O.

HPSS_EOWNER Physical Volume is still owned by a Virtual Volume.

HPSS_EMMDELETE Metadata Manager failure.

HPSS_EMMREAD Metadata Manager failure.

HPSS_ESYSTEM Transaction manager error.

See also
ss_PVCreate.

Clients
Storage System Manager.

Notes
The physical volume must not be pointed to by any virtual volume.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-19
Rev. 0

4.1.11. ss_PVGetAttrs

Purpose
Return the attributes of a physical volume.

Syntax
#include "ss_interface.h"

signed32
ss_PVGetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
char *PVName, /* IN */
pv_attr_t *PVRetAttr, /* OUT */
trpc_status_t *RPCStatus); /* OUT */

Description
The ss_PVGetAttrs function returns the attributes of a physical volume.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session The handle which identifies the session.

ReqstID User supplied request identifier.

PVName The unique name of the physical volume to delete, maximum of
8 characters.

PVRetAttr A pointer to a physical volume attribute record which contains the
characteristics of the physical volume.

RPCStatus A pointer to a returned RPC status code.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT Physical volume record does not exist.

HPSS_EMMREAD Metadata Manager failure.

See also
ss_PVSetAttrs.

Clients
Storage System Manager, Virtual Volume layer.

Chapter 4: Storage Server Functions

4-20 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Notes
This functions is non-transactional.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-21
Rev. 0

4.1.12. ss_PVMount

Purpose
Mount one or more physical volumes.

Syntax
#include "ss_interface.h"

signed32
ss_PVMount(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
pv_list_t *PVListIn, /* IN */
pv_list_t *PVListOut); /* OUT */

Description
The ss_PVMount function mounts one or more physical volumes.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session The handle which identifies the session.

ReqstID User supplied request identifier.

PVListIn A list of physical volumes to mount.

PVListOut The list of physical volumes mounted, and the associated
information for each mount.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT Physical Volume does not exist.

HPSS_ENOMOUNT Trying to set position on a Physical Volume that is not mounted.

HPSS_ESYSTEM Transaction manager failure.

See also
ss_PVUnmount.

Clients
Virtual volume layer, Storage System Manager.

Notes

Chapter 4: Storage Server Functions

4-22 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Mount requests that contain a list of PVs to mount are assumed to be atomic, i.e. they are to be
mounted as a single mount job. If a group of PVs is to be mounted individually, then a call to
ss_PVMount must be made for each PV.

In a disk Storage Server, all disks are mounted when the server starts. Calls to ss_PVMount
cause no physical mount to occur and return immediately.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-23
Rev. 0

4.1.13. ss_PVRead

Purpose
Read one or more physical volumes.

Syntax
#include "ss_interface.h"

signed32
ss_PVRead(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
IOD_t *PVIODPtr, /* IN */
IOR_t *PVIORPtr); /* OUT */

Description
The ss_PVRead function issues reads to a Mover, wait for replies, and then reply to the client with
the IOR.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session The handle which identifies the session.

ReqstID User supplied request identifier.

PVIODPtr A pointer to the structure which describes the I/O requests.

PVIORPtr A pointer to the structure which describes the state of I/O
requests at completion of the transfer.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOMOUNT Physical Volume is not mounted.

HPSS_ECONFLICT Physical Volume being accessed by other thread.

HPSS_EINVAL IOD was invalid or inconsistent.

HPSS_EFAULT DCE or environment error.

HPSS_ENOMEM Server exhausted internal memory.

HPSS_EPERM Volume protected against reads.

HPSS_EMMREAD Metadata Manager failure.

Chapter 4: Storage Server Functions

4-24 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_EMMUPDATE Metadata Manager failure.

HPSS_EOM Trying to read off end of volume.

HPSS_ESYSTEM Transaction manager failure.

other Data movement errors may occur during a read. These errors
are described in the IOD/IOR document.(EOM, EIO, etc.).

See also
HPSS Programmer’s Reference, Volume 1 for the format and use of IODs and IORs.

ss_PVWrite.

Clients
Virtual Volume layer, Storage System Manager.

Notes
PVs must be mounted before issuing this function.

If the result of the read is zero(0), the IOR must still be checked to verify what data was actually
moved and if any errors occurred.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-25
Rev. 0

4.1.14. ss_PVSetAttrs

Purpose
Set the attributes of a physical volume.

Syntax
#include "ss_interface.h"

signed32
ss_PVSetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
u_signed64 InSelectBitmap /* IN */
pv_attr_t *InPVAttr, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
pv_attr_t *OutPVAttr); /* OUT */

Description
The ss_PVSetAttrs function sets the attributes of a physical volume as specified through the
input attribute record.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session The handle which identifies the session.

ReqstID User supplied request identifier.

Select Bit flags that select the attribute(s) to change.

PVAttrIn A pointer to a physical volume attribute record which contains the
characteristics of the physical volume to set. The physical
volume is selected by setting the Name field in this record.

Selected Bit flags that report attributes changed in PVAttrOut.

PVAttrOut A pointer to a physical volume attribute record which contains the
characteristics of the physical volume after the set.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Connection handle is invalid.

HPSS_ENOENT Physical Volume does not exist.

HPSS_EOWNER could not set VVID field in Physical Volume.

HPSS_ENOMOUNT trying to set position on a Physical Volume that is not mounted.

Chapter 4: Storage Server Functions

4-26 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_EINVAL Input parameter error.

HPSS_ECONFLICT Physical Volume being accessed by other thread.

HPSS_EFAULT DCE or environment error.

HPSS_EMMREAD Metadata Manager failure.

HPSS_EMMUPDATE Metadata Manager failure.

HPSS_ESYSTEM Transaction manager error.

See also
ss_PVGetAttrs.

Clients
Storage System Manager.

Notes
Physical Volume must be mounted to set Current Position.

A Physical volume must be mounted to change the position characteristics.

Changes to position characteristics or the ending of a section will have no effect on disk
positioning or media format.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-27
Rev. 0

4.1.15. ss_PVUnmount

Purpose
Unmount one or more physical volumes.

Syntax
#include "ss_interface.h"

signed32
ss_PVUnmount(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
pv_list_t *PVList); /* IN */

Description
The ss_PVUnmount function unmounts one or more physical volumes.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session The handle which identifies the session.

ReqstID User supplied request identifier.

PVList A list of physical volumes to unmount.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT Physical Volume in list not mounted.

See also
ss_PVMount.

Clients
Physical volume layer, Virtual volume layer, Storage System Manager.

Notes
The unmount will not cause a physical unmount to fixed media and will return without error.

Chapter 4: Storage Server Functions

4-28 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.16. ss_PVWrite

Purpose
Write a physical volume.

Syntax
#include "ss_interface.h"

signed32
ss_PVWrite(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
IOD_t *PVIODPtr, /* IN */
IOR_t *PVIORPtr); /* OUT */

Description
The ss_PVWrite function issues writes to a set of Mover’s, waits for replies, and then replies to
the client with an IOR.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session The handle which identifies the session.

ReqstID User supplied request identifier.

PVIODPtr A pointer to the structure which describes the I/O requests.

PVIORPtr A pointer to the structure which describes the state of I/O
requests at completion of the transfer.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT Physical Volume does not exist.

HPSS_ENOMOUNT trying to set position on a Physical Volume that is not mounted.

HPSS_EINVAL Input parameter error.

HPSS_EFAULT DCE or environment failure.

HPSS_ENOMEM Internal server memory exhausted.

HPSS_EMMREAD Metadata Manager failure.

HPSS_EMMUPDATE Metadata Manager failure.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-29
Rev. 0

HPSS_EOM Physical end of media was reached.

HPSS_ESYSTEM Transaction manager failure.

See also
HPSS Programmer’s Reference, Volume 1 for the format and use of IODs and IORs.

ss_PVRead.

Clients
Virtual Volume layer, Storage System Manager.

Notes
PVs must be mounted before issuing this function.

If the result is zero(0) the IOR must still be checked to verify what data actually was moved and if
any errors occurred during data movement.

Chapter 4: Storage Server Functions

4-30 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.17. ss_ServerGetAttrs

Purpose
Gets the generic attributes of the Storage Server.

Syntax
#include "ss_interface.h"

signed32
ss_ServerGetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID, /* IN */
hpss_server_attrib_t *SSAttrOut, /* OUT */
trpc_status_t *RPCStatus); /* OUT */

Description
The ss_ServerGetAttrs function returns the generic attributes of the Storage Server.

Parameters
Binding TRPC structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

SSAttrOut A pointer to a Storage Server attribute record which returns the
characteristics of the Storage Server.

RPCStatus A pointer to a returned RPC status code.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Connect handle is invalid.

HPSS_EINVAL Input parameter invalid

See also
ss_ServerSetAttrs.

Clients
Storage System Manager.

Notes
This is a non-transactional function.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-31
Rev. 0

4.1.18. ss_ServerSetAttrs

Purpose
Change the generic characteristics of the Storage Server.

Syntax
#include "ss_interface.h"

signed32
ss_ServerSetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID, /* IN */
u_signed64 InSelectBitmap, /* IN */
hpss_server_attrib_t *InSSAttr, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
hpss_server_attrib_t *OutSSAttr, /* OUT */
trpc_status_t *RPCStatus); /* OUT */

Description
The ss_ServerSetAttrs function changes the attributes of the Storage Server.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

InSelectBitmap Bit flags that select the attribute(s) to change.

InSSAttr A pointer to a Storage Server attribute record which contains the
characteristics to set.

OutSelectBitmap Bit flags that report attributes changed in OutSSAttr.

OutSSAttr A pointer to a Storage Server attribute record which returns the
characteristics of the Storage Server.

RPCStatus A pointer to a returned RPC status code.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Connect handle is invalid.

HPSS_EINVAL Input parameter invalid.

See also
ss_ServerGetAttrs.

Clients
Storage System Manager.

Chapter 4: Storage Server Functions

4-32 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Notes
This is a non-transactional function.

Only the RegisterBitmap and AdministrativeState fields of the server state can be changed with
this function.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-33
Rev. 0

4.1.19. ss_SSCopySegment

Purpose
Copy the data content of a storage segment to a new storage segment on a different virtual
volume.

Syntax
#include "ss_interface.h"

signed32
ss_SSCopySegment(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
hpssoid_t *SrcSSID, /* IN */
hpssoid_t *VVID, /* IN */
ss_attr_t *SSAttrOut, /* OUT */
trpc_status_t *RPCStatus); /* OUT */

Description
The ss_SSCopySegment function creates a new storage segment using the attributes of the
source segment on a different virtual volume, and copies the source segment’s data content to
the new segment.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

SrcSSID The object identifier of the storage segment that contains the
source data.

VVID The object identifier of the virtual volume that should be used, if
possible, as the destination. If this argument is zero, it is ignored
and any available virtual volume is used.

SSAttrOut The attributes of the new segment.

RPCStatus A pointer to a returned RPC status code.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT Storage Segment does not exist.

HPSS_ENOMOUNT Storage Segment could not be mounted.

Chapter 4: Storage Server Functions

4-34 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_EPOSERROR Virtual Volume could not be positioned to the beginning of the
segment..

HPSS_EFAULT DCE or internal system error.

HPSS_ENOMEM Internal server memory exhausted.

HPSS_EMMREAD Metadata Manager failure.

HPSS_ENOSPACE There is no space to create the destination segment.

HPSS_EINVAL VVID is invalid or points to an inappropriate virtual volume (non-
matching storage class).

See also
ss_SSMoveSegment.

Clients
Migration and Caching Clients, Replication Clients, Storage System Manager.

Notes
This function is non-transactional.

The source segment does not need to be mounted prior to executing this function. If the source
segment is mounted in another session, this function will block until the volume is freed.

If VVID points to a valid virtual volume, ss_SSCopySegment will attempt to use the volume as
the destination. If the volume does not contain sufficient space a different volume is used. If the
volume parameters are inappropriate, HPSS_EINVAL is returned.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-35
Rev. 0

4.1.20. ss_SSCreate

Purpose
Create a storage segment.

Syntax
#include "ss_interface.h"

signed32
ss_SSCreate(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
unsigned32 FamilyId, /* IN */
unsigned32 Options, /* IN */
signed32 Count /* IN */
ss_attr_t *SSAttrIn, /* IN */
ss_attr_t *SSAttrOut, /* OUT */
ss_segment_array_t **Segments); /* OUT */

Description
The ss_SSCreate function creates one or more storage segments. The attributes for the new
storage segments are input through a storage segment attribute record, SSAttrIn. The attributes
of the created storage segment are returned in a second storage segment attribute record,
SSAttrOut. The number of segments to create, options for the operation and the FamilyId to
assign to the segments are input through the arguments. The storage segment SOIDs are
returned through an output conformant array (Segments).

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session A pointer to a session handle that identifies a session to be
associated with the segment. See notes below.

ReqstID User supplied request identifier.

FamilyId The identifier for the family in which the segment is to be created.
This argument is supported by the tape storage server only. A
value of zero means that the segment must be created on
volumes not associated with a family.

Options Option flags that control the details of the operation.

The flag SS_CREATE_HINT_MANDATORY causes the storage
server to return an error (HPSS_ENOSPACE) if the segments
cannot be created on the VV described in the SSID hint. If the
flag is not given, another VV will be chosen.

Count The number of segments to create. The tape storage server can
create only one segment for each call to ss_SSCreate and will
return an error (HPSS_EINVAL) if this argument is any other
value. The disk storage server can create any number of

Chapter 4: Storage Server Functions

4-36 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

segments for each call to ss_SSCreate and requires only that
Count be greater than zero.

SSAttrIn A pointer to a storage segment attribute record which contains
the characteristics requested for the storage segment to be
created.

SSAttrOut A pointer to a storage segment attribute record which contains
the characteristics of the storage segment created.

Segments A pointer to a pointer to a ss_segment_array_t structure. The
caller should preset *Segments to null. The server will create a
conformant array of SOIDs in the ss_segment_array_t structure
and return a pointer to it in *Segments..

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Connection handle is invalid.

HPSS_ECONFLICT Session is already is use.

HPSS_ENOSPACE No space available.

HPSS_EINVAL Input parameter invalid.

HPSS_EOWNER Invalid or empty owner set in attributes.

HPSS_EMMREAD Metadata Manager failure.

HPSS_EMMINSERT Metadata Manager failure.

HPSS_ESYSTEM Transaction manager failure.

See also
None.

Clients
Bitfile Server.

Notes
Fields that may be set when creating a storage segment are listed in the ss_attr_t data structure
definition.

Tape and disk storage segment creation follow different rules that are complex. They are outlined
separately below:

Tape storage segment creation:

The tape storage server can create only one storage segment for each call to ss_SSCreate. This
limitiation is imposed by the nature of sequential magnetic tape, i.e., the tape can be written only
at its logical end, so tape storage segments must be created created, written and terminated
sequentially.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-37
Rev. 0

The tape Storage Server recognizes two hints for selection of a virtual volume for a new tape
storage segment. If the SSAttrIn->MD.SSID field is non-zero, it is taken to be the ID of an existing
tape storage segment. The server will attempt to create a new segment on the same virtual
volume that contains SSAttrIn->MD.SSID. If the selected volume is assigned to another session,
the session reservation is overridden by this option. If no space is left in that volume, or the
volume is already busy, the Storage Server will create the segment on another volume.

The session parameter is used as a virtual volume hint as well. If a tape storage segment has
previously been created in the session given in the call, the virtual volume used for that segment
will be tried for the new segment. If the volume is available and has the correct storage class and
sufficient free space, the segment will be created. If these criteria cannot be met, other volumes
are tried. If a segment is successfully created, its virtual volume will be assigned to the session.

Once a tape storage segment is created, the storage map for the virtual volume becomes busy
and stays busy until the session is closed, or the storage segment is terminated (see
ss_SSWrite).

Disk storage segment creation:

The algorithm for creating disk storage segments is different from the tape algorithm in some
important ways.

The disk storage server can create multiple storage segments for each call to ss_SSCreate. It
selectes a disk Virtual Volume and creates as many segments on it as possible, up to the value of
“Count”. The characteristics of the segments (block size, allocated length, etc.) are all alike in the
batch of segments.

The SS ID hint, described above, is employed, if provided by the caller, but the session hint is not
available. The session argument in disk storage segment creation calls is included only for
consistency with the tape calling sequence.

In tape storage segments, the AllocatedLength parameter is considered by the server to be a
guide to the length of the segment, but more or less information can be written to the segment,
depending on the available space on the virtual tape.

In disk storage segments, the AllocatedLength parameter sets the maximum length of the disk
segment. The data area of the segment can be written at any location, in any order, but data
cannot be written past the AllocatedLength. The segment can be shortened (see
ss_SSSetAttrs).

Segments on disk are allocated at their declared size, rounded up to the next multiple of the VV
block size. The segment is allocated contiguous blocks of the underlying disk virtual volume. The
segment length can be decreased (disk blocks are given up), and can be increased only if the
number of disk blocks making up the segment does not increase. No provision is made for
adding disk blocks to storage segments at this time.

FamilyId is not supported by the disk storage server. Disk storage segments do not have a
meaningful family id attribute.

Disk storage maps are locked while the transaction in which the ss_SSCreate call is made
remains unresolved. When the transaction resolves, the storage map becomes available for a
new segment creation operation immediately. The map does not stay busy as it does for tape
storage segments.

Chapter 4: Storage Server Functions

4-38 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.21. ss_SSDelete

Purpose
Delete a storage segment.

Syntax
#include "ss_interface.h"

signed32
ss_SSDelete(
trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID /* IN */
hpssoid_t SSID) /* IN */

Description
The ss_SSDelete function deletes a storage segment.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

SSID The SOID of the segment to be deleted.

Return Values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error Conditions
HPSS_EBADCONN Connection handle is invalid.

HPSS_ENOENT Segment does not exist

HPSS_EINVAL Input parameter invalid.

HPSS_EOWNER The owner attributes are invalid.

HPSS_EMMREAD Metadata Manager failure.

HPSS_EUPDATE Metadata Manager failure.

HPSS_EDELETE Segment could not be deleted from metadata.

HPSS_ESYSTEM Transaction system error.

Related Information
None.

Clients
BitFile Server.

Notes

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-39
Rev. 0

The space occupied by tape storage segments cannot be reused until the virtual volume is
reclaimed. The space occupied by disk storage segments can be reused immediately after
ss_SSUnlink finishes.

Chapter 4: Storage Server Functions

4-40 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.22. ss_SSDeleteList

Purpose
Delete a list of storage segments.

Syntax
#include "ss_interface.h"

signed32
ss_SSDelete(
trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID /* IN */
ss_delete_segment_array_t *Segments) /* IN/OUT*/

Description
The ss_SSDeleteList function deletes a list storage segments.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

Segments A pointer to a ss_delete_segment_array_t structure that contains
a conformant array of storage segment SOIDs and error codes.

Return Values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error Conditions
HPSS_EBADCONN Connection handle is invalid.

HPSS_ENOTREADY Server initialization not complete, or server shutting down.

HPSS_ENOENT Segment does not exist

HPSS_EINVAL Input parameter invalid.

HPSS_EMMREAD Metadata Manager failure.

HPSS_EUPDATE Metadata Manager failure.

HPSS_EDELETE Segment could not be deleted from metadata.

HPSS_ESYSTEM Transaction system error.

Related Information
ss_SSDelete.

Clients
BitFile Server.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-41
Rev. 0

Notes
The space occupied by tape storage segments cannot be reused until the virtual volume is
reclaimed. The space occupied by disk storage segments can be reused immediately after
ss_SSUnlink finishes.

Most errors are returned on a per storage segment basis, in the error codes in the “Segments”
argument.

ss_SSDeleteList is a non-transactional function.

Chapter 4: Storage Server Functions

4-42 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.23. ss_SSGetAttrs

Purpose
Gets the attributes of a storage segment.

Syntax
#include "ss_interface.h"

signed32
ss_SSGetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID /* IN */
hpssoid_t *SegID, /* IN */
ss_attr_t *SSAttrOut, /* OUT */
trpc_status_t *RPCStatus); /* OUT */

Description
ss_SSGetAttributes returns the attributes of a storage segment.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

SegID The object identifier of the storage segment to operate on.

SSAttrOut A pointer to a storage segment attribute record which returns the
characteristics of the storage segment.

RPCStatus A pointer to a returned RPC status code.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Connection handle is invalid.

HPSS_ENOENT Segment does not exist.

HPSS_EMMREAD Metadata Manager failure.

See also
ss_SSSetAttrs.

Clients
Bitfile Server, Storage System Manager.

Notes
This is a non-transactional function.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-43
Rev. 0

4.1.24. ss_SSMount

Purpose
Mount a segment and assign it to a session.

Syntax
#include "ss_interface.h"

signed32
ss_SSMount(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
hpssoid_t *SSID); /* IN */

Description
The virtual volume associated with the named storage segment is located and reserved to the
given session. An ss_VVMount function is then performed and the volume is mounted and
positioned to the start of the storage segment. The automatic dismount of idle storage segments
is disabled.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

SSID The object identifier of the segment to mount.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT Storage Segment does not exist.

HPSS_ENOMOUNT Storage Segment could not be mounted.

HPSS_EPOSERROR Virtual Volume could not be positioned to the beginning of the
segment..

HPSS_EFAULT DCE or internal system error.

HPSS_ENOMEM Internal server memory exhausted.

HPSS_EMMREAD Metadata Manager failure.

See also
ss_SSUnmount.

Clients

Chapter 4: Storage Server Functions

4-44 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Migration and Caching Clients, Repacking Clients, Storage System Manager.

Notes
The ss_SSMount function is provided to optimize tape-to-tape copying of storage segments. The
function allows a copy facility to mount the source and sink tapes in advance of starting a copy
operation.

In disk Storage Servers, this function causes the mounting of the appropriate unmounted disk
volume. If the volume is mounted, the function returns immediately.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-45
Rev. 0

4.1.25. ss_SSMoveSegment

Purpose
Move a storage segment to a new virtual volume.

Syntax
#include "ss_interface.h"

signed32
ss_SSMoveSegment(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
hpssoid_t *SSID, /* IN */
hpssoid_t *VVID, /* IN */
ss_attr_t *SSAttrOut, /* OUT */
trpc_status_t *RPCStatus); /* OUT */

Description
ss_SSMoveSegment creates a new data body for the given segment and copies the data from
the original virtual volume to the new virtual volume. When successful, the original data body is
deleted. The segment’s identifier, SSID, does not change.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session The handle which identifies the session.

ReqstID User supplied request identifier.

SSID The object identifier of the storage segment.

VVID Where to move the segment. If the VVID is all zero’s then a
Virtual Volume with the same characteristics as the segment will
be chosen.

SSAttrOut The updated attributes of the moved segment.

RPCStatus A pointer to a returned RPC status code.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Connect handle is invalid.

HPSS_ENOENT Storage Segment is not currently mounted.

HPSS_ENOSPACE There is no space to move the data.

HPSS_EINVAL VVID is unavailable or inappropriate.

Chapter 4: Storage Server Functions

4-46 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

See also
ss_SSCopySegment

Clients
Migration and Caching Clients, Repacking Clients, Maintenance utilities, Storage System
Manager.

Notes
This function is non-transactional.

The source segment does not need to be mounted prior to executing this function. If the source
segment is mounted in another session, this function will block until the volume is freed.

If VVID points to a valid virtual volume, ss_SSMoveSegment will attempt to use the volume as
the destination. If the volume does not contain sufficient space a different volume is used. If the
volume parameters are inappropriate, HPSS_EINVAL is returned.

It is best to call ss_SSMoveSegment with a session that has not been used for any other
purpose. This reduces the possibilty of the server having difficulty reserving the necessary
resources.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-47
Rev. 0

4.1.26. ss_SSRead

Purpose
Read data from one or more storage segments.

Syntax
#include "ss_interface.h"

signed32
ss_SSRead(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
IOD_t *SSIODPtr, /* IN */
IOR_t *SSIORPtr); /* OUT */

Description
The ss_SSRead function reads data from the storage segments given in SSIODPTR to the
destination given in SSIODPTR. An IOR is filled in with the results of the operation.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session Identifies the Storage Server session in which to perform the
function.

ReqstID User supplied request identifier.

SSIODPtr A pointer to the structure which describes the I/O requests.

SSIORPtr A pointer to the structure which describes the state of I/O
requests at completion of the transfer.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned. In the case of a zero (0) error being returned, the IOR must still be checked to
see what data was moved. . If the function completed without error, but an error was reported in
the IOR from elsewhere in the system, the function returns with the IOR status value.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT Storage segment does not exist.

HPSS_ENOMOUNT Could not mount the virtual volume that contains the storage
segment.

HPSS_ECONFLICT Storage segment is busy in some other thread.

HPSS_EINVAL Input parameter invalid.

HPSS_EMMREAD Metadata Manager failure.

Chapter 4: Storage Server Functions

4-48 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_EMMUPDATE Metadata Manager failure.

HPSS_ESYSTEM Transaction manager failure.

other: Error moving data. Error translates to data movement error.

See also
ss_SSWrite, ss_BeginSession.

Clients
Bitfile Server.

Notes
Tape virtual volumes that are the targets of the read operation are mounted and unmounted as
needed by this function.

The read function is synchronous - the function blocks until the read operation is complete, with or
without error, before returning the IOR. Disk differs from tape in that many disk I/O’s may be
active to a particular storage media, while on tape only one I/O may be active at a time. The
server guarantees this behavior.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-49
Rev. 0

4.1.27. ss_SSrvGetAttrs

Purpose
Gets the attributes of the Storage Server.

Syntax
#include "ss_interface.h"

signed32
ss_SSrvGetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
unsigned32 ReqstID, /* IN */
ssrv_attr_t *SSAttrOut, /* OUT */
trpc_status_t *RPCStatus); /* OUT */

Description
The ss_SSrvGetAttrs function returns the attributes of the Storage Server.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

SSAttrOut A pointer to a Storage Server attribute record which returns the
characteristics of the Storage Server.

RPCStatus A pointer to a returned RPC status code

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Connection handle is invalid.

HPSS_EINVAL Input parameter invalid.

HPSS_EMMREAD Metadata Manager failure.

See also
ss_SSrvSetAttrs.

Clients
Storage System Manager.

Notes
This is a non-transactional function.

Chapter 4: Storage Server Functions

4-50 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.28. ss_SSrvSetAttrs

Purpose
Change the characteristics of the Storage Server.

Syntax
#include "ss_interface.h"

signed32
ss_SSrvSetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID, /* IN */
u_signed64 InSelectBitmap, /* IN */
ssrv_attr_t *InSSAttr, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
ssrv_attr_t *OutSSAttr, /* OUT */
trpc_status_t *RPCStatus); /* OUT */

Description
The ss_SSrvSetAttrs function changes the attributes of the Storage Server.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

OutSelectBitmap Bit flags that select the attribute(s) to change.

InSSAttr A pointer to a Storage Server attribute record which contains the
characteristics to set.

InSelectBitmap Bit flags that report attributes changed in OutSSAttr.

OutSSAttr A pointer to a Storage Server attribute record which returns the
characteristics of the Storage Server.

RPCStatus A pointer to a returned RPC status code.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_EINVAL Input parameter invalid.

HPSS_EMMREAD Metadata Manager failure.

HPSS_EMMUPDATE Metadata Manager failure.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-51
Rev. 0

HPSS_ESYSTEM Encina transactional system failure. System log will contain more
information about system failure.

See also
ss_SSrvGetAttrs.

Clients
Storage System Manager.

Notes
This is a non-transactional function.

Chapter 4: Storage Server Functions

4-52 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.29. ss_SSSetAttrs

Purpose
Change the characteristics of a storage segment

Syntax
#include "ss_interface.h"

signed32
ss_SSSetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
u_signed64 InSelectBitmap, /* IN */
ss_attr_t *InSSAttr, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
ss_attr_t *OutSSAttr); /* OUT */

Description
The ss_SSSetAttrs function changes the attributes of a storage segment.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session Identifies the Storage Server session in which to perform the
function.

ReqstID User supplied request identifier.

InSelectBitmap Bit flags that select the attribute(s) to change.

InSSAttr A pointer to a storage segment attribute record which contains
the characteristics to set. The storage segment is selected by
setting the SSID field in this record.

OutSelectBitmap Bit flags that report attributes changed in OutSSAttr.

OutSSAttr A pointer to a storage segment attribute record which returns the
new characteristics of the storage segment.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT Storage segment does not exist.

HPSS_EINVAL Input parameter invalid.

HPSS_ECONFLICT Segment busy performing I/O.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-53
Rev. 0

HPSS_EMMREAD Metadata Manager failure.

HPSS_EMMUPDATE Metadata Manager failure.

HPSS_ESYSTEM Transaction manager failure.

See also
ss_SSGetAttrs.

Clients
Bitfile Server, Storage System Manager.

Notes
The fields in ss_attr_t that may be changed by this function are listed in the ss_attr_t data
structure definition.

Attributes to be set are indicated with bit flags in the SelectFlags argument. Certain attributes
may not be changed.

Owner information is set or deleted according to the value of the DELETE_OWNER flag in the
calling owner_rec_t structure passed in as part of InSSAttr. If DELETE_OWNER is set, a
matching owner record will be deleted from the storage segment records. If not set, the owner will
be added.

Changes to positioning information or attempts to force media marks on disk will succeed but will
have no effect on the media (e.g. no real mark will be written and addressing will not be altered.

In the tape Storage Server, setting the size of the AllocatedLength is meaningless. In the disk
server changing AllocatedLength is meaningful. If the new length is shorter than the current
length the vacated space is returned to the storage map for reassignment (segment truncation). If
the new length is greater than the current length, an attempt is made to increase the size of the
storage segment by appending space to the segment (segment extension). This can be done
only if the space following the segment is available and long enough. If no space is available, an
error is returned. If some space is available, but not as much as requested, it is appended and
the new (less than expected) length is returned.

In the disk server, WrittenLength is meaningless. Setting WrittenLength is allowed, but has no
effect

Chapter 4: Storage Server Functions

4-54 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.30. ss_SSStartMount

Purpose
Start a distributed mount of a storage segment

Syntax
#include "ss_interface.h"

signed32
ss_SSSetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 *Active, /* IN */
signed32 ReqstID, /* IN */
signed32 *SSID, /* IN */
hpssoid_t *NewJob, /* IN/OUT */
signed32 *PVLJobID); /* IN/OUT */

Description
The virtual volume associated with the name storage segment is located and reserved to the
given session. A mount operation is started for the VV, but is completed at some later time. If
Active is True, a new mount job is started and PVLJobId is set to the new PVL job id. If Active is
false, the VV to be mounted is added to an existing PVL job given by PVLJobId.

If Active is True, NewJob is an output argument and will be True if a new PVL job was started. If
Active is False, NewJob is an input argument that is True if the active side of the distributed
mount started a new job.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session Identifies the Storage Server session in which to perform the
function.

ReqstID User supplied request identifier.

Active True if this function is called by the active side of a distributed
mount; false if called by the passive side.

SSID The object identifier of the segment to mount.

NewJob NewJob works as described above.

PVLJobId The PVL job id of the new PVL job.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-55
Rev. 0

HPSS_ENOENT Storage segment does not exist.

HPSS_ENOMOUNT Storage Segment could not be mounted.

HPSS_EPOSERROR Virtual Volume could note be positioned to the beginning of the
segment.

HPSS_EFAULT DCE or internal system error.

HPSS_ENOMEM Internal server memory exhausted.

HPSS_EMMREAD Metadata Manager failure.

See also
ss_SSRead, ss_SSWRITE.

Clients
Migration and Caching Clients, Repacking Clients, SSM.

Notes
This function is used by clients to mount the Vvs for two storage segments, in a single PVL mount
job. Using a single job prevents the possibility of mount deadlocks that can result from use two
PVL jobs.

The two storage segments are expected to be part of a segment to segment copy operation,
usually disk segment to tape segment. The caller must divide the operation into active and
passive parts. The tape segment usually takes the active role and the disk segment usually takes
the passive role.

The call to ss_SSStartMount on the Active side comes first. When the call returns, a PVL job id
will have been assigned, but the VV will not yet be mounted. Next, the call to the passive side is
made using the PVL job id returned from the active side. The passive side call adds its VV to the
mount job and returns.

The caller may then go ahead and call ss_SSRead or ss_SSWrite to perform the I/O. If the
mount job has not completed at the time these functions are called, the mount is waited for.

Chapter 4: Storage Server Functions

4-56 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.31. ss_SSUnlink

Purpose
Unlink a storage segment.

Syntax
#include "ss_interface.h"

signed32
ss_SSUnlink(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID, /* IN */
ss_attr_t *SSAttrIn); /* IN */

Description
The ss_SSUnlink function unlinks a storage segment. The reference count for the storage
segment is decremented and if the result is zero, the segment is deleted from the server.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

SSAttrIn Attributes that describe the segment to be unlinked.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Connection handle is invalid.

HPSS_ENOENT Segment does not exist.

HPSS_EINVAL Input parameter invalid.

HPSS_EOWNER The owner attributes are invalid.

HPSS_EMMREAD Metadata Manager failure.

HPSS_EUPDATE Metadata Manager failure.

HPSS_EDELETE Segment could not be deleted from metadata.

HPSS_ESYSTEM Transaction system error.

See also
None.

Clients
Bitfile Server.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-57
Rev. 0

Notes
The space occupied by tape storage segments cannot be reused until the virtual volume is
reclaimed. The space occupied by disk storage segments can be reused immediately after
ss_SSUnlink finishes.

Chapter 4: Storage Server Functions

4-58 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.32. ss_SSUnmount

Purpose
Unmount a storage segment.

Syntax
#include "ss_interface.h"

signed32
ss_SSUnmount(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
hpssoid_t *SSID); /* IN */

Description
The ss_SSUnmount function unmounts a storage segment. The associated virtual volume is
unmounted and disassociated from the session.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session The handle which identifies the session.

ReqstID User supplied request identifier.

SSID The object identifier of the storage segment.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Connect handle is invalid.

HPSS_ENOENT Storage Segment is not currently mounted.

See also
ss_SSMount.

Clients
Migration and Caching Clients, Repacking Clients, Storage System Manager.

Notes
In the disk Storage Server, virtual volumes are never actually unmounted. The logically mounted
volume is unmounted (dissociated from the session).

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-59
Rev. 0

4.1.33. ss_SSWrite

Purpose
Write data to one or more storage segments.

Syntax
#include "ss_interface.h"

signed32
ss_SSWrite(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
IOD_t *SSIODPtr, /* IN */
IOR_t *SSIORPtr); /* OUT */

Description
The ss_SSWrite function writes data to the storage segments given in SSIODPTR to the
destination given in SSIODPTR. An IOR is filled in with the results of the operation.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session Identifies the Storage Server session in which to perform the
function.

ReqstID User supplied request identifier.

SSIODPtr A pointer to the structure which describes the I/O requests.

SSIORPtr A pointer to the structure which describes the state of I/O
requests at completion of the transfer.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT Storage segment does not exist.

HPSS_ENOMOUNT Could not mount the virtual volume that contains the storage
segment.

HPSS_ECONFLICT Storage segment is busy in some other thread.

HPSS_EINVAL Input parameter invalid.

HPSS_EMMREAD Metadata Manager failure.

HPSS_EMMUPDATE Metadata Manager failure.

Chapter 4: Storage Server Functions

4-60 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_ESYSTEM Transaction manager failure.

HPSS_EOM End of media has been reached. Segment can not be extended
further.

other: Error moving data. Error translates to data movement error.

See also
ss_SSRead, ss_BeginSession.

Clients
Bitfile Server.

Notes
Tape virtual volumes that are the targets of the write operation are mounted and unmounted as
needed by this function.

The write function is synchronous - the function blocks until the write operation is complete, with
or without error, before returning the IOR. Disk and tape write operations look the same to the
caller, however long delays associated with mounting tapes are to be expected.

The semantics of disk storage segment writes are different from tape segment writes. Tape
storage segments can only be appended to. Disk segment writes can occur anywhere within the
limits of the segment, but segments cannot be extended by writing past the end of the segment.
Other than insuring that disk storage segment writes occur entirely within the limits of the
segment, the disk Storage Server does not record any information about which portions of disk
storage segments have been written.

There is no EOM condition on segments. Attempts to write outside of the address space of a disk
storage segment receive an HPSS_EINVAL error.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-61
Rev. 0

4.1.34. ss_VVCreate

Purpose
Create a virtual volume.

Syntax
#include "ss_interface.h"

signed32
ss_VVCreate(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID, /* IN */
vv_attr_t *VVAttrIn, /* IN */
vv_attr_t *VVAttrOut, /* OUT */
hpssoid_t *VVID); /* OUT */

Description
The ss_VVCreate function creates a new virtual volume. The attributes of the new virtual volume
are input through a virtual volume attribute record.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

VVAttrIn A pointer to a virtual volume attribute record which contains the
characteristics requested for the virtual volume to be created.

VVAttrOut A pointer to a virtual volume attribute record which contains the
characteristics of the virtual volume created.

VVID The object identifier of the created virtual volume.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT At least one Physical Volume does not exist.

HPSS_EEXIST Physical Volume already part of another Virtual Volume.

HPSS_EINVAL Input parameter error.

HPSS_ENOMEM Server memory exhausted.

HPSS_EFAULT Internal DCE or system library error.

HPSS_EMMREAD Metadata Manager failure.

Chapter 4: Storage Server Functions

4-62 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_EMMINSERT Metadata Manager failure.

HPSS_ESYSTEM Transaction manager error.

See also
ss_VVDelete.

Clients
Storage Server layer, Storage System Manager.

Notes
Fields that may be set when creating a virtual volume are listed in the vv_attr_t data structure
definition.

The disk virtual volume will be mounted and the metadata cached during this operation.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-63
Rev. 0

4.1.35. ss_VVDelete

Purpose
Delete a virtual volume

Syntax
#include "ss_interface.h"

signed32
ss_VVDelete(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 ReqstID, /* IN */
hpssoid_t *VVID); /* IN */

Description
The ss_VVDelete function deletes a virtual volume. A virtual volume must have no owners when
deleted.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

VVID The object identifier of the virtual volume to delete.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT Virtual Volume does not exist.

HPSS_EEINUSE Virtual Volume is currently being accessed.

HPSS_EOWNER Virtual Volume is owned and being used.

HPSS_ENOMEM Server exhausted memory.

HPSS_EMMREAD Metadata Manager failure.

HPSS_EMMDELETE Metadata Manager failure.

HPSS_ESYSTEM Transaction manager error.

See also
ss_VVCreate.

Clients
Storage Server layer, Storage System Manager.

Chapter 4: Storage Server Functions

4-64 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Notes
None.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-65
Rev. 0

4.1.36. ss_VVGetAttrs

Purpose
Gets the attributes of a virtual volume.

Syntax
#include "ss_interface.h"

signed32
ss_VVGetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
hpssoid_t *VVID, /* IN */
vv_attr_t *VVAttrOut, /* OUT */
trpc_status_t *RPCStatus); /* OUT */

Description
The ss_VVGetAttributes function returns the attributes of a virtual volume record.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session The handle which identifies the session.

ReqstID User supplied request identifier.

VVID The object identifier of the virtual volume.

VVAttrOut A pointer to a virtual volume attribute record which contains the
characteristics of the virtual volume.

RPCStatus A pointer to a returned RPC status code.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Connection handle is invalid.

HPSS_ENOENT Virtual Volume does not exist.

HPSS_ENOMEM Internal server memory exhausted.

HPSS_EMMREAD Metadata Manager failure.

See also
ss_VVSetAttrs.

Clients
Storage Server layer, Storage System Manager.

Chapter 4: Storage Server Functions

4-66 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Notes
This function is non-transactional.

Attributes that represent the position of the media will not be valid for a disk Storage Server and
will be set to zero’s (0).

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-67
Rev. 0

4.1.37. ss_VVMount

Purpose
Mount a virtual volume.

Syntax
#include "ss_interface.h"

signed32
ss_VVMount(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
hpssoid_t *VVID, /* IN */
composite_address_t *StartAbsAddr, /* IN */
relative_address_t *StartRelAddr, /* IN */
relative_address_t *DesiredRelAddr); /* IN */

Description
The ss_VVMount function gets the Virtual Volume mounted and positioned to the desired
location.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

ReqstID User supplied request identifier.

VVID The object identifier of the virtual volume to mount.

StartAbsAddr The media specific absolute addressing information of the start
of a block on the virtual volume.(used for tape only).

StartRelAddr The relative address of the start address of a block on the virtual
volume.(used for tape only).

DesiredRelAddr The desired byte position within the block given by the start
address.(used for tape only).

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT Virtual Volume does not exist.

HPSS_ENOMOUNT Virtual Volume could not be mounted.

HPSS_EPOSERROR Virtual Volume could not be positioned.

HPSS_EFAULT DCE or internal system error.

Chapter 4: Storage Server Functions

4-68 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_ENOMEM Internal server memory exhausted.

HPSS_EMMREAD Metadata Manager failure.

See also
ss_VVUnmount.

Clients
Storage Server Layer, Storage System Manager.

Notes
The positioning information will not be used for disk, it will only have meaning for tape. For
consistency however; the client may wish to store and pass this information at all times, so that
the client does not have to distinguish between a disk and a tape Storage Server.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-69
Rev. 0

4.1.38. ss_VVRead

Purpose
Read data from a virtual volume.

Syntax
#include "ss_interface.h"

signed32
ss_VVRead(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
IOD_t *VVIODPtr, /* IN */
IOR_t *VVIORPtr) /* OUT */

Description
The ss_VVRead function translates IOD virtual volume addresses into physical volume
addresses and issue reads and wait for replies from the Physical Volume layer, then replies to the
caller with the IOR.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session The handle which identifies the session.

ReqstID User supplied request identifier.

VVIODPtr A pointer to the structure which describes the I/O requests.

VVIORPtr A pointer to the structure which describes the state of I/O
requests at completion of the transfer.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT Virtual Volume does not exist.

HPSS_ENOMOUNT Virtual Volume could not be mounted.

HPSS_EINVAL Input parameter error.

HPSS_EPERM Virtual Volume state does not allow reads.

HPSS_ENOMEM Internal server memory exhausted.

HPSS_EMMREAD Metadata Manager failure.

Chapter 4: Storage Server Functions

4-70 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_EMMUPDATE Metadata Manager failure.

HPSS_EFAULT DCE or other environment error.

HPSS_EOM Trying to read off the end of media.

HPSS_ESYSTEM Transaction manager error.

other Errors that may occur during any data movement operation.

See also
ss_VVWrite.

Clients
Storage Server layer, Storage System Manager.

Notes
IODs may refer to more than one virtual volume.

If the result is zero(0), the IOR must still be checked to verify what data was actually moved and
any errors that may have occurred during the move.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-71
Rev. 0

4.1.39. ss_VVSetAttrs

Purpose
Sets the attributes of a virtual volume.

Syntax
#include "ss_interface.h"

signed32
ss_VVSetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
u_signed64 InSelectBitmap, /* IN */
vv_attr_t *InVVAttr, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
vv_attr_t *OutVVAttr); /* OUT */

Description
The ss_VVSetAttrs function changes the attributes of a virtual volume record.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session The handle which identifies the session.

ReqstID User supplied request identifier.

InSelectBitmap Bit flags that select the attribute(s) to change.

InVVAttr A pointer to a virtual volume attribute record which contains the
characteristics requested for the virtual volume. The virtual
volume is selected by setting the VVID field in this record.

OutSelectBitmap Bit flags that report attributes changed in VVAttrOut.

OutVVAttr A pointer to a virtual volume attribute record which contains the
characteristics of the virtual volume.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT Virtual Volume does not exist

HPSS_ENOMOUNT Virtual Volume could not be mounted.

HPSS_EPOSERROR Virtual Volume could not be positioned.

Chapter 4: Storage Server Functions

4-72 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_EOWNER Could not delete owner.

HPSS_EINVAL Input parameter error.

HPSS_EMMREAD Metadata Manager failure.

HPSS_EMMUPDATE Metadata Manager failure.

HPSS_ESYSTEM Transaction manager failure.

See also
ss_VVGetAttrs.

Clients
Storage Server layer, Storage System Manager.

Notes
The fields in vv_attr_t that may be changed by this function are listed in the vv_attr_t data
structure definition.

The virtual volume must be mounted to set the CurrentPosition.

Owner information is set or deleted according to the value of the DELETE_OWNER flag in the
calling owner_rec_t structure passed in as part of SSAttrIn. If DELETE_OWNER is set, a
matching owner record will be deleted from the storage segment records. If not set, the owner will
be added.

Setting the position information or an attempt to end section on a disk virtual volume will succeed
but will cause no I/O to the disk media and will not change the Section field of the address as it
does on tape.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-73
Rev. 0

4.1.40. ss_VVUnmount

Purpose
Unmount a virtual volume.

Syntax
#include "ss_interface.h"

signed32
ss_VVUnmount(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
hpssoid_t *VVID); /* IN */

Description
The ss_VVUnmount function unmounts a virtual volume.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session The handle which identifies the session.

ReqstID User supplied request identifier.

VVID The object identifier of the virtual volume.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Connect handle is invalid.

HPSS_ENOENT Virtual volume is not currently mounted.

See also
ss_VVMount.

Clients
Storage Server Layer, Virtual Volume Layer, Storage System Manager.

Notes
The unmount command will not actually issue an unmount to the PVL in the disk Storage Server.

Chapter 4: Storage Server Functions

4-74 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.1.41. ss_VVWrite

Purpose
Write data to a virtual volume.

Syntax
#include "ss_interface.h"

signed32
ss_VVWrite(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
hpss_object_handle_t *Session, /* IN */
signed32 ReqstID, /* IN */
IOD_t *VVIOD, /* IN */
IOR_t *VVIOR); /* OUT */

Description
The ss_VVWrite function translates IOD virtual volume addresses into physical volume
addresses and issue writes and waits for replies from the Physical Volume layer, then replies to
the client with the IOR.

Parameters
Binding DCE structure used to locate a server on the network.

CNH Used to maintain server specific state for a particular client.

Session The handle which identifies the session.

ReqstID User supplied request identifier.

VVIOD A pointer to the structure which describes the I/O requests.

VVIOR A pointer to the structure which describes the state of I/O
requests at completion of the transfer.

Return values
Upon successful completion the function returns a zero(0). If an error occurs, the negated error
code is returned.

Error conditions
HPSS_EBADCONN Invalid connection handle.

HPSS_ENOENT Virtual Volume does not exist

HPSS_ENOMOUNT Virtual Volume could not be mounted.

HPSS_EINVAL Input parameter error.

HPSS_EAPPEND Tape not at append point.

HPSS_EOM End of tape was hit on the write.

HPSS_EPERM VV state does not allow writes.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-75
Rev. 0

HPSS_ENOMEM Internal server memory exhausted.

HPSS_EFAULT DCE or environment error.

HPSS_EMMREAD Metadata Manager failure.

HPSS_EMMUPDATE Metadata Manager failure.

HPSS_ESYSTEM Transaction manager error.

other Errors that may occur during data movement. See IOD/IOR
document.

See also
ss_VVRead.

Clients
Storage Server layer, Storage System Manager.

Notes
IODs may refer to more than one virtual volume.

If the result of a write call is zero(0), the IOR must still be checked to verify what data was actually
moved and if any errors occurred during the data movement.

Chapter 4: Storage Server Functions

4-76 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

4.2. Data Definitions

This section describes key internal data definitions and all externally used data definitions which are
provided by this subsystem. A data definition may be represented by constructs such as data structures
and constants. For each data definition, a description, format (including parameter descriptions), and
clients which access the data definition are provided.

4.2.1. Storage Server Attribute Record - ssrv_attr_t

Description

The ssrv_attr_t is used to transfer information about the Storage Server across Storage Server functional
interfaces.

Format

The ssrv_attr_t has the following format:

typedef struct ssrv_attr {
uuid_t ServerID;
u_signed64 RegisterBitMap;
u_signed64 TotalVirtualVolumes
u_signed64 TotalAllocatedVolumes
u_signed64 TotalBytes;
u_signed64 UsedBytes;
u_signed64 FreeBytes;
char SS_MAP_MetaData_Name[HPSS_MAX_DCE_NAME];
char SS_SS_MetaData_Name[HPSS_MAX_DCE_NAME];
char SS_VV_MetaData_Name[HPSS_MAX_DCE_NAME];
char SS_PV_MetaData_Name[HPSS_MAX_DCE_NAME];
char SS_SC_MetaData_Name[HPSS_MAX_DCE_NAME];
signed32 ReadDrives;
signed32 WriteDrives;
uuid_t PVL_UUID;

} ssrv_attr_t;

The following fields can be modified with a ss_SSrvSetAttrs function call:

RegisterBitMap TotalVirtualVolumes TotalAllocatedVolumes

TotalBytes UsedBytes FreeBytes

The remaining fields in the attribute record are readable but not writeable.

ServerID

Unique identifier for the server.

RegisterBitMap

Map of registered ssrv_attr_t fields.

TotalVirtualVolumes

The total number of Virtual Volumes supported by this server.

TotalAllocatedVolumes

The total number of Virtual Volumes on which storage space has been allocated.

TotalBytes

The total number of bytes of storage available to this Storage Server. These bytes are available through

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-77
Rev. 0

the Storage Segment interface.

UsedBytes

The number of bytes that have been recorded. This field applies to the Storage Segment interface.

FreeBytes

The number of unused bytes available for recording. This field applies to the Storage Segment interface.

SS_MAP_MetaData_Name

Path name of the file that contains the metadata that describes the Volume Maps. Volume Maps are
described later in this document.

SS_SS_MetaData_Name

Path name of the file that contains the metadata that describes the Storage Segments. Storage
Segments are described later in this document.

SS_VV_MetaData_Name

Path name of the file that contains the metadata that describes the Virtual Volumes. Virtual Volumes are
described later in this document.

SS_PV_MetaData_Name

Path name of the file that contains the metadata that describes Physical Volumes. Physical Volumes are
described later in this document.

SS_SC_MetaData_Name

Path name of the file that contains the system storage class metadata.

ReadDrives

The number of drives that are available for reading Physical Volumes.

WriteDrives

The number of drives that are available for writing Physical Volumes.

PVL_UUID

Unique identifier of the Physical Volume Library. This UUID is used to validate connections made to the
Storage Server.

Clients

The following clients access the data definition:

Storage System Manager.

4.2.2. Storage Segment Record - storage_segment_record_t

Description

A storage_segment_record is a volatile record that describes a Storage Segment. It is used to hold
information needed to control access to storage segments with a session. This record is an internal
structure within the Storage Server and is used to keep track of active segments within the server.

Format

The storage_segment_record has the following format:

typedef struct storage_segment_record {

Chapter 4: Storage Server Functions

4-78 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

hpssoid_t SSID;
hpssoid_t VVID;
unsigned32 Flags;
signed32 ThreadsUsing;
u_signed64 WrittenLength;
hpss_connect_handle_t ConnectionHandle
hpss_object_handle_t SessionHandle;
pthread_cond_t Cond;
timestamp_sec_t TimeStamp;
tran_tid_t OwningTid;
tran_tid_t CreateTid;
tran_tid_t DeleteTid;
storage_segment_md_t *MD;
struct storage_segment_record *next, *prev
struct storage_segment_record *newer, *older;
struct storage_segment_record *next_sess_ssr,

 *prev_sess_ssr;
struct storage_segment_record *next_list;

} storage_segment_record_t;

SSID

Storage segment ID.

VVID

Virtual Volume that contains the segment.

Flags

SS_IO Segment has I/O in progress.

SS_DELETED Record is no longer valid.

SS_WRITTEN Segment has been written.

SS_INUSE Cache entry in use.

SS_DESTROYED Cache entry to be removed.

SS_VOIDMD Cache MD must be reloaded.

SS_BADMD Cache MD must be reloaded once more.

SS_DIRTY MD points to metadata that needs to be flushed to SFS.

SS_READ_WITHOUT_LOCK Cache MD was last read without using a bracket read lock
(possibly a dirty read).

ConnectionHandle

The connection on which the Storage Segment was accessed.

SessionHandle

Session associated with this record.

Cond

Condition variable to wait for locks on the structure (not used in tape Storage Servers).

TimeStamp

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-79
Rev. 0

Time record last used.

OwningTid, CreateTid, DeleteTid

Transaction IDs that control use of the cache entry.

MD

Pointer to metadata associated with this record (not used in tape Storage Servers). The condition of the
MD (valid or invalid) is determined by the state of the Flags field.

next, prev

Active segment chain links.

Newer, older

Links to newer and older records in cache.

next_sess_ssr, prev_sess_ssr

Active session chain links.

next_list

Call-back chain link.

Clients

The following clients access the data definition:

Storage Server.

4.2.3. Storage Segment Attribute Record - ss_attr_t

Description

The ss_attr_t is used to transfer information about storage segments across Storage Server functional
interfaces.

Format

The ss_attr_t has the following format:

typedef struct ss_attr {
storage_segment_md_t MD;
u_signed64 RegisterBitMap

} ss_attr_t;

The following segment metadata fields can be written during the process of creating a storage segment,
but remain fixed afterwards:

SClassId VVID AbsoluteStartAddr

RelativeStartAddr

The following segment metadata fields can be modified with a ss_SSSetAttributes function call:

Acct Allocated_Length WrittenLength

OperationalState UsageState AdministrativeState

SSState RegisterBitMap Owners

Chapter 4: Storage Server Functions

4-80 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The remaining fields in the attribute record are readable but not writeable.

MD

The storage segment metadata record.

RegisterBitMap

The map of registered notification fields.

Clients

The following clients access the data definition:

Bitfile Server, Storage System Manager.

4.2.4. Storage Segment Metadata - storage_segment_md_t

Description

A storage segment metadata record is a permanent record that describes a storage segment.

Format

The storage_segment_md has the following format:

typedef struct storage_segment_md {
hpssoid_t SSID;
hpssoid_t VVID;
acct_rec_t Acct;
unsigned32 SClassId;
signed32 RefCnt;
signed32 NumReads;
signed32 NumWrites;
signed32 OperationalState;
signed32 UsageState;
signed32 AdministrativeState;
signed32 SSState;
unsigned32 BlockSize;
u_signed64 AllocatedLength;
u_signed64 WrittenLength;
composite_address_t AbsoluteStartAddr;
relative_address_t RelativeStartAddr;
relative_address_t RelativeNextByteAddr;
owner_rec_t Owners;
security_t Security;
timestamp_sec_t LastRead;
timestamp_sec_t LastWrite;
timestamp_sec_t Creation;
timestamp_sec_t Update;
unsigned32 Unused[8];

} storage_segment_md_t;

SSID

The storage segment ID. Primary search key.

VVID

The associated virtual volume ID. Secondary search key.

Acct

Accounting information.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-81
Rev. 0

SClassId

Storage Class ID values as defined in the bit file server.

RefCnt

Number of references to this segment. If this number is zero then the segment may be deleted.

NumReads

Total number of reads.

NumWrites

Total number of writes.

OperationalState

Operational state flags:

ST_ENABLED

ST_DISABLED

UsageState

Usage state flags:

ST_IDLE

ST_ACTIVE

ST_BUSY

AdministrativeState

Administrative state flags:

ST_LOCKED

ST_UNLOCKED

SSState

SEG_NULL Segment is invalid and does not map any space.

SEG_ALLOCATED Segment maps space and allows appends.

SEG_LENGTH_FIXED Segment mapped but no appends are allowed.

BlockSize

The block size of the media.

AllocatedLength

The allocated length of the segment, in bytes.

WrittenLength

The address of the last byte written into the segment, plus one. This field is not meaningful in disk
Storage Servers and is ignored.

Chapter 4: Storage Server Functions

4-82 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

AbsoluteStartAddr

Concatenated media absolute addresses that define the starting point of the storage segment on the
media. This field is not meaningful in disk Storage Servers and is ignored.

RelativeStartAddr

The relative address that defines the starting point of the storage segment on the media. This address is
relative to the beginning of the media. This field is not meaningful in disk Storage Servers and is ignored.

RelativeNextByteAddr

The relative address that defines the byte following the ending point of the storage segment. This address
is used for an append operation and is relative to the beginning of the media. This field is not meaningful
in disk Storage Servers and is ignored.

Owners

Owner is an owner_rec_t that defines the owner of this storage segment. Each client wishing to be linked
with this storage segment provides a non-zero SOID that can be used by the Storage Server to contact
the client. Zero entries in the array are vacant. Each time a non-zero entry is added to the array, RefCnt
is incremented by one.

Security

Security information of unknown format.

LastRead

The time of last read.

LastWrite

The time of last write.

Creation

The time the segment was created.

Update

The time of the last change to the segment

Clients

The following clients access the data definition:

Bitfile server, Storage System Manager

4.2.5. Storage Map Record - storage_map_record_t

Description

A storage_map_record_t is a volatile record that describes a Storage Map. It is used to hold information
needed to control access to storage maps. This record is an internal structure within the Storage Server
and is used to keep track of active maps within the server.

Format

The storage_map_record has the following format:

typedef struct storage_map_record {
hpssoid_t VVID;
unsigned32 Flags;
pthread_cond_t Cond;

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-83
Rev. 0

signed32 ThreadsUsing;
tran_tid_t OwningTid;
tran_tid_t CreateTid;
tran_tid_t DeleteTid;
u_signed64 PrevSpaceLeft;
storage_map_md_t *MD;
storage_map_md_t *OldMD;
signed32 CondVar;
struct storage_map_record*next_map, *prev_map;
struct storage_map_record*next_search, *prev_search;

} storage_map_record_t;

VVID

Virtual Volume that is mapped by the record.

Flags

MAP_INUSE Cache entry in use.

MAP_DESTROYED Cache entry to be deleted.

MAP_VOIDMD Cache MD must be reloaded.

MAP_BADMD Cache MD must be reloaded once.

MAP_READ_WITHOUT_LOCK Cache MD was last read without using a bracket read lock
(possibly a dirty read).

Cond

Condition variable to wait for locks on the structure (not used in tape Storage Servers).

ThreadsUsing

Count of the number of threads using or waiting for the cache entry.

OwningTid, CreateTid, DeleteTid

Transaction IDs that control use of the cache entry.

PrevSpaceLeft

Previous value of SpaceLeft. Used to keep cache consistent.

MD

Pointer to metadata associated with this record (not used in tape Storage Servers). The condition of the
MD (valid or invalid) is determined by the state of the Flags field.

OldMD

Poiner to a metadata record containing the state of the metadata prior to any changes. This record is
compared with “MD” to determine which fields have changed, so that only those fields will be changed in
the metadata record on disk.

Next_map, prev_map

Active segment chain links.

Next_search, prev_search

Storage map search links. The disk storage maps are linked together using these links to form a loop
which the server uses to determine the next storage map to search for storage space.

Chapter 4: Storage Server Functions

4-84 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Clients

The following clients access the data definition:

Storage Server.

4.2.6. Storage Map Attribute Record - ss_map_attr_t

Description

The ss_map_attr_t is used to transfer information about storage maps across Storage Server functional
interfaces.

Format

The ss_map_attr_t has the following format:

typedef struct ss_map_attr {
storage_map_md_t MD;
u_signed64 RegisterBitMap;

} ss_map_attr_t;

The following map metadata fields can be written during the process of creating a storage map, but
remain fixed afterwards:

SClassId VVID

The following map metadata fields can be modified with a ss_MapSetAttributes function call:

OperationalState UsageState

AdministrativeState MapState RegisterBitMap

TapeSz EstSz SpaceLeft

The remaining fields in the attribute record are readable but not writeable.

MD

The storage map metadata record.

RegisterBitMap

The map of registered notification fields.

Clients

The following clients access the data definition:

Bitfile Server, Storage System Manager

4.2.7. Tape Storage Map Metadata - storage_map_md_t

Description

The storage_map_md_t is a permanent record that describes the usage of the storage space controlled
by the Storage Server. There is one storage_map_md associated with each tape virtual volume. Storage
segments are created by allocating space from a storage_map_md, and assigning it to the storage
segments.

Format

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-85
Rev. 0

The storage_map_md_t has the following format:

typedef struct storage_map_md {
hpssoid_t VVID;
hpssoid_t CurrentSSID;
signed32 NumActiveSegments
signed32 OperationalState;
signed32 UsageState;
signed32 AdministrativeState;
signed32 MapState;
unsigned32 SClassId;
unsigned32 Flags;
unsigned32 BlkSz;
u_signed64 TapeSz;
u_signed64 EstSz;
unsigned32 FamilyId;
unsigned32 Unused[7];

} storage_map_md_t;

VVID

The associated virtual volume ID. Primary search key.

CurrentSSID

The ID of the current segment that is being written. This field used only with append type media (Tape,
Optical, etc.).

NumActiveSegments

The number of storage segments associated with this map.

OperationalState

Operational state flags:

ST_ENABLED

ST_DISABLED

UsageState

Usage state flags:

ST_IDLE

ST_ACTIVE

ST_BUSY

ST_UNKNOWN

AdministrativeState

Administrative state flags:

ST_LOCKED

ST_UNLOCKED

MapState

MAP_NULL The map is invalid and maps no real space.

Chapter 4: Storage Server Functions

4-86 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

MAP_FREE Map allows space allocation.

MAP_ALLOCATED Map has free space, but the last segment created is still being written.
(This state only valid on append type media).

MAP_EOM No more free space in map. This value is used only in tape storage
maps.

MAP_EMPTY Tape has reached EOM and all storage segments have been removed.

MAP_TALLY Storage map is a special storage class tally map.

MAP_RETIRED Tape has been retired. Once retired, the state cannot be changed.
Storage space cannot be created on retired volumes.

SClassId

Storage Class ID values as defined in the bit file server. This field is a secondary search key along with
SpaceLeft.

Flags

MAP_NEVER_WRITTEN

True until first allocation taken from map.

MAP_STAT_FREE True when the VV is counted as FREE in the storage class statistics.

MAP_STAT_PARTIAL True when the VV is counted as partially filled in the storage class
statistics.

BlkSz

The block size in bytes of the media associated with this storage_map_md. This is the minimum size that
can be written atomically to the media.

TapeSz

Contains the number of bytes currently allocated on the media

EstSz

Estimated size is a constant byte size set when the map is initialized and is an estimate of the capacity of
the virtual volume.

SpaceLeft

SpaceLeft is initialized to the value of EstSz and is decremented as the space is consumed. This field is a
secondary search key along with SClassId. This field should be considered a hint or guide and will not be
exact.

FamilyId

The family associated with the tape volume. If zero, no family is associated.

Clients

The following clients access the data definition:

SS Layer, Storage System Manager.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-87
Rev. 0

4.2.8. Disk Storage Map Metadata

Description

The disk_storage_map_md_t is a permanent record that describes the usage of the disk storage space
controlled by the Storage Server. There is one disk_storage_map_md associated with each disk virtual
volume. Storage segments are created by allocating space from a disk_storage_map_md, and assigning
it to the storage segments.

Format

The disk_storage_map_md_t has the following format:

typedef struct disk_storage_map_md {
hpssoid_t VVID;
hpssoid_t CurrentSSID;
signed32 NumActiveSegments
signed32 OperationalState;
signed32 UsageState;
signed32 AdministrativeState;
signed32 MapState;
unsigned32 SClassId;
unsigned32 Flags;
unsigned32 BlkSz;
u_signed64 TapeSz;
u_signed64 EstSz;
u_signed64 SpaceLeft;
unsigned32 FamilyId;
unsigned32 Unused[7];
byte BitMap[MAX_ALLOC_BITMAP_SIZE];

} disk_storage_map_md_t;

VVID

The associated virtual volume id. Primary search key.

CurrentSSID

This field is not used. It is provided to keep disk_storage_map_md_t congruent with storage_map_md_t.

NumActiveSegments

The number of storage segments associated with this map.

OperationalState

Operational state flags:

ST_ENABLED

ST_DISABLED

UsageState

Usage state flags

ST_IDLE

ST_ACTIVE

ST_BUSY

ST_UNKNOWN

Chapter 4: Storage Server Functions

4-88 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

AdministrativeState

Administrative state flags

ST_LOCKED

ST_UNLOCKED

MapState

MAP_NULL The map is invalid and maps no real space.

MAP_FREE Map allows space allocation.

MAP_RETIRED Disk has been retired. Once retired the state cannot be changed.
Storage space cannot be created on retired volumes.

SClassId

Storage Class ID values as defined in the bit file server. This field is a secondary search key along with
SpaceLeft.

Flags

MAP_OFFLINE True when map describes VV off-line.

BlkSz

The block size in bytes of the media associated with this storage_map_md. This is the minimum size that
can be written atomically to the media.

TapeSz

Contains the number of bytes currently allocated on the media. This field is set to the exact size of the disk
and will be equal to the ’EstSz’ field.

EstSz

Estimated size is a constant byte size set when the map is initialized. This field gives the exact size of the
disk.

SpaceLeft

SpaceLeft is initializied to the value of EstSz and is decremented as the space is consumed. This field is
a secondary search key along with SClassId. On disks, this number will be exact.

BitMap

Bit map that keeps track of used space on the disk Each bit in the map designates the state of a VV block
of disk storage. On the SFS disk, this field is represented by an array of byte arrays. Each of these sub-
fields is updated only if it changes to minimize the amount of information transmitted to SFS and to
minimize the SFS transaction log.

Clients

The following clients access the data definition:

SSLayer, SSM.

4.2.9. Virtual Volume Record - virtual_volume_record_t

Description

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-89
Rev. 0

A virtual_volume_record is a volatile record that describes a virtual volume. This record is only active and
valid when the volume is mounted.

Format

The virtual_volume_record has the following format:

typedef struct virtual_volume_record {
hpssoid_t VVID;
unsigned32 Flags;
pthread_cond_t Cond;
signed32 ThreadsUsing;
signed32 LastState;
tran_tid_t OwningTid;
tran_tid_t CreateTid;
tran_tid_t DeleteTid;
relative_address_t CurrentRelativeAddr;
composite_address_t CurrentAbsoluteAddr;
relative_address_t NextRelativeAddr;
composite_address_t NextAbsoluteAddr;
hpss_connect_handle_t ConnectionHandle;
hpss_object_handle_t SessionHandle;
pv_list_t *PVList;
virtual_volume_md_t *MD;
struct virtual_volume_record *SharedRecordPtr;
struct virtual_volume_record *next_active, *prev_active;
struct virtual_volume_record *next_sess, *prev_sess;
signed32 NumActiveSessions;
signed32 VolumeState;
signed32 AdministrativeState;
unsigned32 StripeWidth;
u_signed64 NumSectionBytes;
u_signed64 BlockSize;
u_signed64 StripeLength;

} virtual_volume_record_t;

VVID

ID of the volume.

Flags

VV_INUSE Record busy in cache.

VV_DESTROYED Record will be removed from cache.

VV_DIRTY Record needs to be written to disk.

VV_BADMD Record needs to be reloaded from disk.

VV_MOUNT_SUCCESS VV mounted successfully.

VV_READ_WITHOUT_LOCK Cache MD was last read without using a bracket read lock
(possibly a dirty read).

VV_REREAD_ON_FINISH Cache entry to be reloaded on commit.

Cond

Condition variable for blocking access to the structure.

ThreadsUsing

Chapter 4: Storage Server Functions

4-90 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Count of the number of threads using or waiting for the cache entry.

LastState

Used for cache consistency.

OwningTid, CreateTid, DeleteTid

Transaction IDs that control use of the cache entry.

CurrentRelativeAddr

Address of the append position of the media (not used in tape Storage Servers). This field is only used for
append type media. This address is relative to the beginning of the Virtual Volume. This field is updated as
a write proceeds.

CurrentAbsoluteAddr

Address of the append position of the media (not used in tape Storage Servers). This field is only valid for
append type media. This address is absolute and will only be valid on media that supports absolute
addressing. This field is updated as a write proceeds.

NextRelativeAddr

Address of the append position after the last successful write (not used in tape Storage Servers). This
field will only be used for append type media. This field will only be updated at the end of an append type
operation. This address is relative to the beginning of the media.

NextAbsoluteAddr

Address of the append position after the last successful write (not used in tape Storage Servers). This
field will only be used for append type media. This field will only be updated at the end of an append type
operation. This address is only valid on media that supports absolute addressing modes.

ConnectionHandle

The ID of the connection on who’s behalf the Virtual Volume is mounted.

SessionHandle

The ID to the session on who’s behalf the Virtual Volume is mounted.

PVList

Pointer to the list of Physical Volumes that make up the Virtual Volume.

MD

Pointer to cached Virtual Volume metadata. This field is currently not used on tape. If not NULL and virtual
volume is a disk, then a pointer to valid metadata.

SharedRecordPtr

Points to a shared virtual_volume_record that contains mount information (disk only).

next_active, prev_active

Active segment chain links.

next_sess, prev_sess

Active session chain links.

NumActiveSessions

The number of sessions that desire this Virtual Volume to be mounted.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-91
Rev. 0

VolumeState

See VolumeState in virtual_volume_md.

AdministrativeState

Administrative state flags:

ST_LOCKED

ST_UNLOCKED

StripeWidth

The number of PV’s that make up this VV.

NumSectionBytes

The number of bytes to be written to the media between marks.

BlockSize

The block size of the Virtual Volume.

StripeLength

The number of bytes that make a full stripe across the VV.

Clients

The following clients access the data definition:

Storage Server.

4.2.10. Virtual Volume Attribute Record - vv_attr_t

Description

The vv_attr_t is used to transfer information about virtual volumes across Storage Server functional
interfaces.

Format

The vv_attr_t has the following format:

typedef struct vv_attr {
virtual_volume_md_t MD
u_signed64 RegisterBitMap;
pv_list_t *PVList;
relative_address_t CurrentRelativeAddr;
composite_address_t CurrentAbsoluteAddr;

} vv_attr_t;

The following fields can be written during the process of creating a virtual volume, but remain fixed
afterwards:

SClassId Form BlkSz

StripeWidth StripeLength

The following fields can be modified with a ss_VVSetAttributes function call:

Acct EstimatedSize ActualSize

Chapter 4: Storage Server Functions

4-92 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

CurrentRelativeAddr Flags Security

CurrentAbsoluteAddr RegisterBitMap

The remaining fields in the attribute record are readable but not writeable.

MD

The virtual volume metadata record.

RegisterBitMap

The map of registered notification fields.

PVList

List of associated physical volumes that make up the Virtual Volume.

CurrentRelativeAddr

Relative address of current position of volume (not used in disk Storage Servers). This field is only valid
for mounted Virtual Volumes.

CurrentAbsoluteAddr

Absolute address of current position of volume (not used in disk Storage Servers). This field is only valid
for mounted Virtual Volumes.

Clients

The following clients access the data definition:

Bitfile Server, Storage System Manager.

4.2.11. Virtual Volume Metadata - virtual_volume_md_t

Description

A virtual volume metadata record describes the characteristics of a virtual volume.

Format

The virtual_volume_md has the following format:

typedef struct virtual_volume_md {
hpssoid_t VVID;
acct_rec_t Acct;
unsigned32 SClassId;
unsigned32 Form;
unsigned32 BlkSz;
unsigned32 StripeWidth;
unsigned32 Flags;
signed32 RefCnt;
signed32 NumReads;
signed32 NumWrites;
signed32 OperationalState;
signed32 UsageState;
signed32 AdministrativeState;
signed32 VVState;
u_signed64 StripeLength;
u_signed64 EstimatedSize;
u_signed64 ActualSize;
relative_address_t NextByteAddr;
composite_address_t NextAbsoluteAddr;
owner_rec_t Owners;

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-93
Rev. 0

security_t Security;
timestamp_sec_t LastRead;
timestamp_sec_t LastWrite;
timestamp_sec_t Creation;
timestamp_sec_t Update;
unsigned32 FamilyId;
unsigned32 Unused[7];

} virtual_volume_md_t;

VVID

The virtual volume ID. Primary search key.

Acct

Accounting information

SClassId

Storage Class ID values as defined in the bit file server. The value will be mapped onto Storage Server
space maps to locate free space of an appropriate type.

Form

Composition of media:

Striped

Concatenated

ParityStriped

Mirrored

Blksz

The block size in bytes of the media associated with this virtual volume.

StripeWidth

Number of stripes.

Flags

VV_WRITE_PROTECT VV may not be written.

VV_EOM VV has reached EOM (tape).

VV_OFFLINE VV is off-line (disk).

RefCnt

The number of links made to a the virtual_volume_md. When a link is deleted, the reference count is
decremented, and when zero, the record becomes eligible for deletion.

NumReads

Number of read operations on this virtual volume.

NumWrites

Number of write operations on this virtual volume.

OperationalState

Chapter 4: Storage Server Functions

4-94 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Operational state flags:

ST_ENABLED

ST_DISABLED

ST_BROKEN

UsageState

Usage state flags:

ST_IDLE

ST_ACTIVE

ST_BUSY

ST_UNKNOWN

AdministrativeState

Administrative state flags:

ST_LOCKED

ST_UNLOCKED

ST_REPAIRED

VVState

Virtual volume state flags.

VOL_NULL Volume is invalid and not in use.

VOL_SCRATCH Volume has not be assigned and contains no valid data.

VOL_ALLOCATED The volume has been assigned to a client.

VOL_FOREIGN The volume contains data that was not written by
HPSS. The format of the media is unknown.

VOL_HPSS_IMPORT The volume has been imported into HPSS from another
site. The format is either HPSS, UniTree, or CFS.

VOL_ALLOCATED_AND_FULL The volume is in HPSS format and has been written to
the end. (Tape only).

StripeLength

Rotation interval in bytes.

EstimatedSize

The estimated size of this virtual volume. For disk this is equal to the ’ActualSize’ field.

ActualSize

The size of this virtual volume. On tape this is the number of bytes currently written. On disk this is the size

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-95
Rev. 0

of the entire device.

NextByteAddr

The relative address of the next byte to write within this virtual volume (not used in disk Storage Servers).

NextAbsoluteAddr

Concatenated media absolute addresses that define the ending position of the last write operation on this
volume (not used in tape Storage Servers).

Owners

Owner is an array of hpssoid_t that define the owners of this virtual volume. Each client wishing to be
linked with this virtual volume provides a non-zero SOID that can be used by the Storage Server to contact
the client. Storage maps associated with the virtual volume will be identified with a SOID. Zero entries in
the array are vacant. Each time a non-zero entry is added to the array, RefCnt is incremented by one.

Security

Security information of unknown format.

LastRead

The time of last read.

LastWrite

The time of last write.

Creation

The time the virtual volume was created.

Update

The time of the last change to the virtual volume.

FamilyId

The family associated with the virtual volume. This field is zero for tapes not associated with families, and
on all disks.

Clients

The following clients access the data definition:

Storage segment layer, Storage Map layer, Storage System Manager.

4.2.12. Physical Volume Record - physical_volume_record_t

Description

A physical volume record is a volatile record that describes a physical storage volume.

Format

The physical volume record has the following format:

typedef struct physical_volume_record {
char PVName[HPSS_PV_NAME_SIZE];
unsigned32 FormatFlags;
unsigned32 Flags;
pthread_cond_t Cond;
signed32 ThreadsUsing;
tran_tid_t OwningTid;

Chapter 4: Storage Server Functions

4-96 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

tran_tid_t CreateTid;
tran_tid_t DeleteTid;
relative_address_t CurrentRelativeAddr;
absolute_address_t CurrentAbsoluteAddr;
relative_address_t NextRelativeAddr;
absolute_address_t NextAbsoluteAddr;
u_signed64 NumSectionBytes;
unsigned32 BlockSize;
unsigned32 BlocksBetweenTMs;
signed32 VolumeState;
signed32 AdministrativeState;
hpss_connect_handle_t ConnectionHandle;
hpss_object_handle_t SessionHandle;
device_table_record_t *DT;
physical_volume_md_t *MD;
struct physical_volume_record *SharedRecordPtr;
struct physical_volume_record *next_active, *prev_active;
struct physical_volume_record *next_sess, *prev_sess;
signed32 NumActiveSessions;
waitlist_t *WaitListHead;
waitlist_t *WaitListTail;
waitlist_t *UnmountWaiter;

} physical_volume_record_t;

PVName

The identifier of the Physical Volume.

FormatFlags

PV recorded format. See pvl_definitions.idl for definitions.

Flags

PV_DIRTY The metadata is dirty and should be flushed to
SFS.

PV_INUSE Cache entry in use.

PV_DESTROYED Cache entry must be removed.

PV_BADMD Cache MD must be reloaded once more.

PV_READ_WITHOUT_LOCK Cache MD was last read without using a bracket
read lock (possibly a dirty record).

PV_REREAD_ON_FINISH Cache MD must be reloaded after transaction
commits.

PV_DEALLOC_IN_PVL_ON_DESTROYPV must be deallocated in the PVL when a PV
destroy function commits.

Cond

Condition structure to wait on for exclusive access.

ThreadsUsing

Count of the number of threads using or waiting for the cache entry.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-97
Rev. 0

OwningTid, CreateTid, DeleteTid

Transaction IDs that control use of the cache entry.

CurrentRelativeAddr

Append address of the current I/O (not used in disk Storage Servers). Only valid for append type media.
This address is relative to the beginning of the media.

CurrentAbsoluteAddr

Append address of the current I/O (not used in disk Storage Servers). Only valid for append type media
that support absolute address modes.

NextRelativeAddr

Append address of the last successfully complete append operation (not used in disk Storage Servers).
Only valid on append type media. This address is relative to the beginning of the media.

NextAbsoluteAddr

Append address of the last successfully completed append operation (not used in disk Storage Servers).
Only valid on append style media that supports absolute addressing modes.

NumSectionBytes

Number of bytes between media marks. (Only valid for tape style media).

BlockSize

The block size of the media (not used in disk Storage Servers).

BlocksBetweenTMs

The number of PV blocks between mandatory tape marks.

VolumeState

VOL_NULL Volume is invalid and not in use.

VOL_SCRATCH Volume has not be assigned and contains no valid data.

VOL_ALLOCATED The volume has been assigned to a client.

VOL_FOREIGN The volume contains data that was not written by
HPSS. The format of the media is unknown.

VOL_HPSS_IMPORT The volume has been imported into HPSS from another
site. The format is either HPSS, UniTree, or CFS.

VOL_ALLOCATED_AND_FULL The volume is in HPSS format and has been written to
the end. (Tape only).

AdministrativeState

Administrative state flags.

ST_LOCKED

ST_UNLOCKED

ConnectHandle

Chapter 4: Storage Server Functions

4-98 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The connection on which the volume is currently mounted.

SessionHandle

The session on which the volume is currently mounted.

DT

The description of the device on which the media is mounted.

MD

Cached metadata information. This field is currently not used on tape. For disk if the pointer is NULL then
there is no cached data, otherwise the data that is cached is valid.

SharedRecordPtr

Points to a shared physical_volume_record that contains mount information (disk only).

next_active, prev_active

Pointers to other structures that describe all the volumes currently mounted.

next_sess, prev_sess

Pointers to other structures that describe all the volumes currently mounted by this session.

NumActiveSessions

The number of sessions that desire access to this volume.

WaitListHead, WaitListTail

Pointers to structures that allow threads to wait for this volume to be dismounted.

UnmountWaiter

Pointer to a structure in which a thread which is unmounting this volume is waiting.

Clients

The following clients access the data definition:

Storage Server internals.

4.2.13. Physical Volume Attribute Record - pv_attr_t

Description

The pv_attr_t is used to transfer information about physical volumes across Storage Server functional
interfaces.

Format

The pv_attr_t has the following format:

typedef struct pv_attr {
physical_volume_md_t MD;
u_signed64 RegisterBitMap;
relative_address_t CurrentRelativeAddr;
absolute_address_t CurrentAbsoluteAddr;
device_table_record_t DeviceTable;

} pv_attr_t;

The following fields can be written during the process of creating a physical volume, but remain fixed
afterwards:

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-99
Rev. 0

Name Type BlockSize

MinTMBlocks MaxTMBlocks

The following fields can be modified with a ss_PVSetAttributes function call:

VVID Acct EstimatedSize

CurrentRelativeAddr LastMaint InService

CurrentAbsoluteAddr ActualSize Security

VVSequence RegisterBitMap

The remaining fields in the attribute record are readable but not writeable.

MD

The physical volume metadata record.

RegisterBitMap

The map of registered notification fields.

CurrentRelativeAddr

Current relative position of media (not used in disk Storage Servers). This field is an address relative to
the beginning of the media and is only valid on sequential type media.

CurrentAbsoluteAddr

Current absolute position of media (not used in disk Storage Servers). This field is only valid on sequential
type media that supports absolute addressing.

DeviceTable

When the physical volume is mounted, this field will contain information that describes the device on which
the volume is mounted.

Clients

The following clients access the data definition:

Bitfile Server, Storage System Manager.

4.2.14. Physical Volume Metadata - physical_volume_md_t

Description

A physical_volume_md is a permanent record that describes a physical storage volume known to the
Storage Server.

Format

The physical_volume_md has the following format:

typedef struct physical_volume_md {
char Name[PV_NAME_SIZE];
media_type_t Type;
unsigned32 BlockSize
unsigned32 MinTMBlocks
unsigned32 MaxTMBLocks
unsigned32 FormatFlags;

Chapter 4: Storage Server Functions

4-100 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

unsigned32 Flags;
signed32 OperationalState;
signed32 UsageState;
signed32 AdministrativeState;
signed32 PVState;
signed32 MountCntSinceService;
signed32 MountCntSinceMaint;
signed32 VVSequence
signed32 RefCnt;
acct_rec_t Acct;
u_signed64 EstimatedSize;
u_signed64 ActualSize;
relative_address_t NextWriteAddr;
absolute_address_t NextAbsoluteWriteAddr
timestamp_sec_t Creation;
timestamp_sec_t Update;
timestamp_sec_t LastRead;
timestamp_sec_t LastWrite;
timestamp_sec_t LastMaint;
timestamp_sec_t InService;
security_t Security;
hpssoid_t VVID;
unsigned32 FamilyId;
unsigned32 Unused[7];

} physical_volume_md_t;

Name

This is the blank filled ASCII name of the physical volume and must be unique. It is the primary search
key.

Type

Type of media:

NETWORK_ATTACHED_DISK

DIRECTLY_ATTACHED_DISK

BlockSize

The block size in bytes of the physical volume.

MinTMBlocks

The minimum allowable blocks between tape marks (not used in disk Storage Servers).

MaxTMBlocks

The maximum allowable blocks between tape marks (not used in disk Storage Servers).

FormatFlags

Flags that describe the recording format. See mvr_devdesc.idl.

Flags

PV_WRITE_PROTECT PV not writeable.

PV_EOM EOM has been reached on the volume.

PV_ABSADDR Absolute addressing enabled on the volume.

PV_OFFLINE PV is not mounted and not available (disk only).

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-101
Rev. 0

OperationalState

Operational state flags:

ST_ENABLED

ST_DISABLED

ST_BROKEN

UsageState

Usage state flags:

ST_IDLE

ST_ACTIVE

ST_BUSY

AdministrativeState

Administrative state flags:

ST_LOCKED

ST_UNLOCKED

ST_REPAIRED

PVState

VOL_NULL Volume is invalid and not in use.

VOL_SCRATCH Volume has not be assigned and contains no valid data.

VOL_ALLOCATED The volume has been assigned to a client.

VOL_FOREIGN The volume contains data that was not written by
HPSS. The format of the media is unknown.

VOL_HPSS_IMPORT The volume has been imported into HPSS from another
site. The format is either HPSS, UniTree, or CFS.

VOL_ALLOCATED_AND_FULL The volume is in HPSS format and has been written to
the end. (Not valid on disk).

MountCntSinceService

The number of mounts performed on this physical volume since it was serviced.

MountCntSinceMaint

The number of mounts performed on this physical volume since it was serviced.

VVSequence

The sequence number of the physical volume in the virtual volume.

RefCnt

Chapter 4: Storage Server Functions

4-102 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The number of links currently active for this physical volume.

Acct

Unknown accounting information.

EstimatedSize

The estimated length in bytes which remain on this physical volume. Used for tape only. For disk this field
will be set equal to the ’ActualSize’ field.

ActualSize

If tape, the number of bytes currently written to the tape. If disk the actual size of the device in bytes. This
must be a multiple of the block size.

NextWriteAddr

Relative address of the next byte to be written on tape (not used in disk Storage Servers). The field is only
valid for append style media. The address is relative to the beginning of the media.

NextAbsoluteWriteAddr

Absolute address of the next byte to be written to tape (not used in disk Storage Servers). This field is only
valid for append style media. The address is only valid on media that supports absolute addressing
modes.

Creation

The time the physical volume was created.

Update

The time of the last change to the physical volume.

LastRead

The time of last read.

LastWrite

The time of last write.

LastMaint

The time of last maintenance (the time the tape was last mounted and read without error).

InService

The time this volume was put into service.

Security

Security information of unknown format.

VVID

The Virtual Volume ID of which this physical volume is a member. This is a secondary key.

FamilyId

The family associated with the physical volume. This field is zero for tapes not associated with families,
and on all disks.

4.2.15. Device Table Record - device_table_record_t

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-103
Rev. 0

Description

A device table record is a volatile record that provides information about a storage device associated with
a mounted physical volume.

Format

The device_table_record has the following format:

typedef struct device_table_record {
signed32 MountId;
signed32 DeviceID;
signed32 Type;
signed32 MvrFd;
uuid_t MvrId;
char MvrIP[MVR_IP_SIZE];
char PVName[HPSS_PV_NAME_SIZE];

} device_table_record_t;

MountId

The job identifier returned by the PVL that describes the mount of the volume.

DeviceID

Identification of the device on which the volume has been mounted.

MvrFd

A socket descriptor for sending control to the Mover.

MvrId

The uuid_t associated with the mover.

MvrIP

The mover’s IP address, including port.

PVName

The ASCII name of the physical volume mounted.

4.2.16. Session Record - ss_session_t

Description

The ss_session_t describes a Storage Server session in effect between the Storage Server and a client.
Storage segments, virtual volumes, physical volumes, connections and sessions are interconnected in this
structure so that if connection with a client fails, the appropriate recovery procedures can be carried out
(unmount media, terminate writes in progress).

Format

The ss_session_t has the following format:

typedef struct ss_session {
hpss_object_handle_t SessionH;
hpss_object_handle_t ConnectH;
unsigned32 Flags;
signed32 ReqstID;
hpss_object_handle_t *UniqueAddr;
pthread_mutex_t Lock;
pthread_cond_t WaitUnlock;
pthread_cond_t WaitVV;
signed32 ThreadsUsing;

Chapter 4: Storage Server Functions

4-104 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

unsigned32 WantedFamily;
unsigned32 WantedStorageClass;
hpssoid_t AvoidVVID;
timestamp_sec_t TimeStamp;
struct ss_session *next_conn, *prev_conn;
struct ss_session *next_hash, *prev_hash;
storage_segment_record_t *HeadSegList, *TailSegList;
virtual_volume_record_t *HeadVVList, *TailVVList;
physical_volume_record_t *HeadPVList, *TailPVList;
hpssoid_t CurrentVV;

} ss_session_t;

SessionH

Identifies the session object.

ConnectH

Identifies parent connection for this session.

Flags

BUSY_SESSION Session is locked and busy.

WAIT_FOR_SESSION Busy session should be waited for.

SESSION_WAITING_FOR_VV Session is waiting for a VV assignment.

FORCE_DISMOUNT Force immediate tape dismounts.

SESSION_STORAGE_CLASS_OVERSUBSCRIBED

Session blocked by storage class oversubscription.

ReqstID

The request ID performing an action on the session.

UniqueAddr

Pointer to a record on the stack, so that lower level calls can tell whether they were called directly by an
RPC or by a straight function call.

Lock

Access lock for this structure.

WaitUnlock

Condition variable to wait on when waiting for another thread to unlock the session.

WaitVV

Condition variable to wait on when the session is waiting for a VV assignement.

ThreadsUsing;

Number of threads that have locked the record, or are waiting to lock the record.

WantedFamily

The needed family id of a tape the session is waiting for.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-105
Rev. 0

WantedStorageClass

The needed storage class of a tape the session is waiting for.

next_conn, prev_conn;

List of ss_sessions that are part a connection.

next_hash, prev_hash

List of all active sessions.

HeadSegList, TailSegList

List of storage segments which hold resources which must be recovered if a connection drops.

HeadVVList, TailVVList

List of virtual volumes involved in connections which must be recovered if a connection drops.

HeadPVList, TailPVList

List of physical volumes involved in connections which must be recovered if a connection drops.

4.2.17. Relative Address - relative_address_t

Description

The relative address defines the address of a byte relative to the beginning of a set of media.

Format

The relative_address_t has the following format:

typedef struct relative_address {
byte Version;
byte Reserved;
unsigned16 Partition;
unsigned32 Section;
u_signed64 Offset;

} relative_address_t;

Version

The format version number of this record.

Partition

The partition number that contains the byte addressed. (Set to zero for disk).

Section

The section number that contains the byte addressed. (Set to zero for disk).

Offset

The byte offset within the section. On tape, the byte offset from the last tape mark. On disk, the offset from
the beginning of the device.

4.2.18. Composite Address - composite_address_t

Description

The composite address defines a set of locations on a set of physical media. The individual locations are
defined by media absolute addresses.

Chapter 4: Storage Server Functions

4-106 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Format

The composite_address_t has the following format:

typedef struct composite_address {
absolute_address_t CompAddr[COMP_ADDR_SIZE];

} composite_address_t;

CompAddr

The array of absolute addresses.

4.2.19. Absolute Address - absolute_address_t

Description

The absolute address defines a location on a physical volume.

Format

The absolute_address_t has the following format:

typedef struct absolute_address {
byte AbsAddr[ABS_ADDR_SIZE];

} absolute_address_t;

AbsAddr

The device dependent physical volume address.

4.2.20. Physical Volume List - pv_list_t

Description

This data structure is used to pass a list of pv_list_element_t’s across the RPC interface.

Format

The pv_list_t has the following format:

typedef struct pv_list {
signed32 Length
[size_is(Length)] pv_list_element_t List[*];

} pv_list_t;

Length

The number of elements in List.

List

A conformant array of pv_list_element_t’s that contain information about a number of Pvs.

Note

The order of elements in this list is determined by the order of physical volumes in a virtual volume.
Length is the number of physical volumes in the virtual volume.

4.2.21. Physical Volume List Element - pv_list_element_t

Description

This is a general data structure that is used to make up lists of physical volumes.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-107
Rev. 0

Format

The pv_list_t has the following format:

typedef struct pv_list {
char Name[PV_NAME_SIZE];
u_signed64 Flags;

} pv_list_element_t;

4.2.22. Owner Record - owner_rec_t

Description

This data structure describes an element of a list of owners of a storage object.

Format

The owner_rec_t has the following format:

#define OWNER_SIZE 1
typedef struct owner_rec {

u_signed64 Flags;
hpssoid_t OwnerArray[OWNER_SIZE];

} owner_rec_t;

OwnerArray

Array of SOIDs that identify an owner of the object associated with this record. Any or all of the array
elements may be null.

Flags

DELETE_OWNER If set during a SetAttributes call, the owner will be deleted from the object’s
owner list, otherwise the owner is added.

Clients

The following clients access the data definition:

Bitfile Server, Storage System Manager.

4.2.23. Wait List - waitlist_t

Description

The waitlist structure is used to queue threads that are waiting for resources. This structure is used mainly
to queue threads that are waiting for media mounts.

Format
The waitlist structure has the following format:
typedef struct waitlist {

pthread_cond_t WaitCond;
signed32 WaitFlag;
signed32 Error;
signed32 LayerDefined1;
signed32 LayerDefined2;
struct waitlist *Next;

} waitlist_t;

WaitCond

The condition variable on which to wait.

WaitFlag

Chapter 4: Storage Server Functions

4-108 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The flag on which to wait.

Error

Error that occurred during the wait. If set the resource that the thread is waiting for can not be accessed at
this time.

LayerDefined1, LayerDefined2

Currently unused.

Next

Pointer to the next element waiting for the resource.

4.2.24. Storage Class Array - ss_class_array_t

Description

This data structure is used to pass an array of ss_class_t’s across the RPC interface.

Format

The ss_class_array_t has the following format:

typedef struct ss_class_array {
signed32 Length
[size_is(Length)] ss_sclass_t Array[*];

} ss_class_array_t;

Length

The number of elements in Array.

List

A conformant array of ss_class_t elements that contain information about the storage classes provided in
the server.

4.2.25. Storage Class Array Element - ss_class_t

Description

This data structure is an element of a list of storage class statistics.

Format

The ss_class_t has the following format:

typedef struct ss_class {
unsigned32 SClassId;
u_signed64 TotalSpace;
u_signed64 FreeSpace;
struct ss_class *Next;

} ss_class_t;

SClassId

The storage class reported

TotalSpace

The amount of storage in the storage class. On tape, this is the number of virtual volumes in the storage
class. On disk, this is the amount of storage in bytes.

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-109
Rev. 0

FreeSpace

The amount of free storage in the storage class. On tape, this is the number of virtual volumes that have
never been written. On disk, this is the amount of free storage, in bytes.

Next

Pointer to next list element, or null.

4.2.26. Event Array - ss_sclass_array_t

Description

This data structure is used to pass an array of ss_event_rec_t’s across the RPC interface.

Format

The ss_event_rec_t has the following format:

typedef struct ss_sclass_array {
signed32 Length
[size_is(Length)] ss_sclass_t Array[*];

} ss_sclass_array_t;

Length

The number of elements in Array.

List

A conformant array of ss_event_rec_t elements that contain information about events.

4.2.27. Event Array Element - ss_event_rec_t

Description

This data structure is an element of an array of Storage Server events.

Format

The ss_event_rec_t has the following format:

typedef struct ss_event_rec {
signed32 ReqstID;
char RoutineName[K_EVENT_STRINGS];
char EventName[K_EVENT_STRINGS];
unsigned32 SerialNumber;
unsigned32 Flags;
unsigned32 tv_sec;
unsigned32 tv_usec;

} ss_event_rec_t;

ReqstID

The request ID the event is recorded under.

RoutineName

The ASCII name of the function that recorded the event.

EventName

An ASCII name for the event.

SerialNumber

Chapter 4: Storage Server Functions

4-110 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

A serial number for the event, assigned by the event manager.

Flags

Event Flags - none defined.

tv_sec

Time in seconds when the event was recorded. From struct timeval.

4.2.28. Segment Array

Description

This data structure used to pass an array of storage segment SOIDs across the RPC interface.

Format

The ss_segment_array_t has the following format:

typedef struct ss_segment_array {
signed32 Length
[size_is(Length)] hpssoid_t Array[*];

} ss_segment_array_t;

Length

The number of elements in Array

Array

A conformant array of storage segment SOIDs.

4.2.29. Delete segment array

Description

This data structure used to pass an array of storage segment SOIDs across the RPC interface, and return
a list of error codes.

Format

The ss_delete_segment_array_t has the following format:

typedef struct ss_segment_array {
signed32 Length
[size_is(Length)] ss_delete_segment_t Array[*];

} ss_delete_segment_array_t;

Length

The number of elements in Array

Array

A conformant array of storage segment delete elements

4.2.30. Delete Segment Array Element

Description

This data structure describes a storage segment to be deleted and the delete error code.

Format

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-111
Rev. 0

The ss_delete_segment_t has the following format:

typedef struct ss_delete_segment {
hpssoid_t SSID;
signed32 *Error;

} ss_delete_segment_t;

SSID

The SOID of the storage segment to delete.

Error

A pointer to the error code that resulted from the segment deletion.

4.2.31. Copy Control Block

Description

The copy control block contains all of the information needed to copy or move a storage segment to
another segment or location.

Format

The copy_control_block_t record has the following format:

typedef struct copy_control_block {
tran_tid_t Tid;
pthread_mutex_t Lock;
pthread_cond_t Cond;
unsigned32 Flags;
ss_iolist_t *ReadSeg, *WriteSeg;
IOD_t ReadIOD, WriteIOD;
srcsinkdesc_t ReadSrcSSD, WriteSrcSSD,

WriteSinkSSD;
requestspec_t WriteRequestSpec,

ReadRequestSpec;
u_signed64 ReadBlockSize;
unsigned32 ReadStripeWidth;
signed32 ReadError, WriteError;
IOR_t ReadIOR, WriteIOR;
srcsinkreply_t ReadSrcSSR, ReadSinkSSR,

WriteSrcSSR, WriteSinkSSR;
signed32 ReqstID;
trpc_handle_t Binding;
hpss_object_handle_t *ActiveSessionHandle,

*PassiveSessionHandle;
signed32 SockAddr,

SockPort,
SockFamily;

u_signed64 TransferID;
} copy_control_block_t;

Tid

The transaction to use during the operation.

Lock

Synchronizes use of the record.

Cond

Synchronizes use of the record.

Chapter 4: Storage Server Functions

4-112 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Flags

CB_ABORT Copy operation aborted

CB_ADDR_LOADED Addresses have been loaded

CB_READ_COMPLETE Read step of copy is complete

ReadSeg, WriteSeg

Information about the segments to be read and written.

ReadIOD, WriteIOD

The IODs to use in copying the segment.

ReadSrcSSD, WriteSrcSSD, WriteSinkSSD

The read and write IOD source and sink descriptors.

WriteRequestSpec, ReadRequestSpec

The request specific fields used in the copy operation.

ReadBlockSize

The VV blocksize of the segment to be copied.

ReadStripeWidth

The VV stripe width of the segment to be copied.

ReadError, WriteError

The error codes returned from the segment read and write operations.

ReadIOR, WriteIOR

The IOR structures which return the results of the segment read and write operations.

ReadSrcSSR, ReadSinkSSR, WriteSrcSSR, WriteSinkSSR

The source and sink reply components of ReadIOR and WriteIOR.

ReqstID

The request ID used in the copy operation.

Binding

The binding used in the copy operation.

ActiveSessionHandle

The session used on the active side of the copy.

PassiveSessionHandle

The session used on the passive side of the copy.

SockAddr, SockPort, SockFamily

The information that describes the socket used to connect to the mover performing the copy.

TransferID

Chapter 4: Storage Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 4-113
Rev. 0

The transfer ID assigned by the mover for the copy operation.

Chapter 4: Storage Server Functions

4-114 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-1
Rev. 0

5. Mover Functions

This chapter specifies the Mover programming interface. Specifically, the following information is provided:

Application Programming Interfaces (APIs)

Data Definitions

5.1. API Functions

This section describes all APIs which are provided for use by another HPSS subsystem or by a client
external to HPSS. The API interface specification includes the following information:

Name

Syntax

Description

Parameters

Return Values

Error Conditions

Related Information

Clients

Notes

Chapter 5: Mover Functions

5-2 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

5.1.1. mvr_Abort

Purpose
Abort the current request outstanding on the current Mover connection.

Syntax
#include “hpss_iod.h”

void
mvr_Abort(

IOD_t *IOD); /* IN */

Description
The mvr_Abort function is called to abort the current request. If the Count field in the request
specific information structure is equal to zero, the Mover aborts the request immediately;
otherwise the request is aborted after at least the number of bytes specified by the Count field
have been successfully transferred.

Parameters
IOD->RequestID Request identifier.

IOD->Function Set to IOD_ABORT .

IOD->ReqSpecInfo->Count If zero, immediately abort the request, abort request after
transferring at least this number of bytes.

Return values
None. Note that this request will not generate an IOR.

Error conditions
None. Note that if an abort request is sent after the data movement request has completed, the
abort request is ignored.

See also
mvr_Read , mvr_Write .

Clients
Storage Server.

Notes
None.

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-3
Rev. 0

5.1.2. mvr_CreateDevice

Purpose
Add a new device.

Syntax
#include "mvr_dceif.h"

signed32
mvr_CreateDevice(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 RequestID, /* IN */
device_desc_t *DeviceMDPtr, /* IN */
trpc_status_t *RPCError); /* OUT */

Description
The mvr_CreateDevice routine is called to create a new entry in the Mover device table (both for
the current execution of the Mover and in Mover device metadata).

Parameters
Binding The TRPC binding handle.

CNH Pointer to an HPSS connection handle.

RequestID Request ID for this query.

DeviceMDPtr Pointer to a device_desc_t structure that contains the metadata
for the new device.

RPCError Pointer to status location; will contain RPC error indication.

Return values
Upon successful completion, a value of zero (0) is returned. If an error is detected, a value is
returned that indicates the specific error.

Error conditions
HPSS_EAGAIN The Mover is currently in the process of shutting down.

HPSS_EBADCONN Connection handle is not valid for this request.

HPSS_EEXIST The specified device already exists.

HPSS_EINVAL Invalid attribute value.

HPSS_EMMINSERT An error occurred while attempting to write the new device
metadata.

HPSS_EOFDGET An error occurred while trying to open the Mover device
metadata file.

HPSS_EPERM Client not authorized for this request.

See also
mvr_DeleteDevice.

Chapter 5: Mover Functions

5-4 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Clients
Storage System Management.

Notes
None.

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-5
Rev. 0

5.1.3. mvr_DeleteDevice

Purpose
Remove an existing device.

Syntax
#include "mvr_dceif.h"

signed32
mvr_DeleteDevice(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 RequestID, /* IN */
unsigned32 DeviceID, /* IN */
trpc_status_t *RPCError); /* OUT */

Description
The mvr_DeleteDevice routine is called to remove an existing entry from the Mover device table
(both for the current execution of the Mover and in Mover device metadata).

Parameters
Binding The TRPC binding handle.

CNH Pointer to an HPSS connection handle.

RequestID Request ID for this query.

DeviceID The identifier of the device to be deleted.

RPCError Pointer to status location; will contain RPC error indication.

Return values
Upon successful completion, a value of zero (0) is returned. If an error is detected, a value is
returned that indicates the specific error.

Error conditions
HPSS_EAGAIN The Mover is currently in the process of shutting down.

HPSS_EBADCONN Connection handle is not valid for this request.

HPSS_EBADF The specified device is does not exist or is not configured for this
Mover.

HPSS_EINVAL Invalid attribute value.

HPSS_EMMDELETE An error occurred while attempting to delete the device
metadata.

HPSS_EOFDGET An error occurred while trying to open the Mover device
metadata file.

HPSS_EPERM Client not authorized for this request.

See also
mvr_CreateDevice.

Chapter 5: Mover Functions

5-6 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Clients
Storage System Management.

Notes
None.

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-7
Rev. 0

5.1.4. mvr_DeviceGetAttrs

Purpose
Query current attribute values for a device controlled by the Mover.

Syntax
#include "mvr_dceif.h"

signed32
mvr_DeviceGetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 RequestID, /* IN */
unsigned32 DeviceID, /* IN */
devdesc_attr_t *DevAttrOut, /* OUT */
trpc_status_t *RPCError); /* OUT */

Description
The mvr_DeviceGetAttrs function is called to query attribute values for a device controlled by the
Mover.

Parameters
Binding The TRPC binding handle.

CNH Pointer to an HPSS connection handle.

RequestID Request ID for this query.

DeviceID Identifier of device being queried.

DevAttrOut Pointer to a devdesc_attr_t structure that will contain the results
of the query.

RPCError Pointer to status location; will contain RPC error indication.

Return values
Upon successful completion, a value of zero (0) is returned. If an error is detected, a value is
returned that indicates the specific error.

Error conditions
HPSS_EAGAIN The Mover is currently in the process of shutting down.

HPSS_EBADF No such device.

HPSS_EBADCONN Connection handle is not valid for this request.

HPSS_EPERM Client not authorized for this request.

See also
mvr_DeviceSetAttrs, mvr_DeviceGetAttrs_IOD, mvr_DeviceSetAttrs_IOD.

Clients
Storage System Management.

Notes

Chapter 5: Mover Functions

5-8 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-9
Rev. 0

5.1.5. mvr_DeviceGetAttrs_IOD

Purpose
Query the current setting of attributes for a device controlled by the Mover.

Syntax
#include “hpss_iod.h”

signed32
mvr_DeviceGetAttrs_IOD(

IOD_t *IOD, /* IN */
IOR_t *IOR); /* OUT */

Description
The mvr_DeviceGetAttrs_IOD function is called to query the current attributes of a device that is
controlled by the Mover.

Parameters
IOD->RequestID Request identifier.

IOD->Function Set to IOD_GETDEVICEATTR.

IOD->ReqSpecInfo.DeviceID Device identifier.

IOR->RequestID Request identifier.

IOR->Status Status of request.

IOR->ReqSpecReply.ReqReplyType Set to REPLY_DEVICEATTR ..

IOR->ReqSpecReply.ReqReply_u Returned device attributes.

Return values
Upon successful completion, a value of zero (0) is returned. If an error is detected, a value is
returned that indicates the specific error.

Error conditions
HPSS_EBADF No such device.

HPSS_ERANGE Device ID specifies the generic Mover device.

See also
mvr_DeviceSetAttrs_IOD , mvr_DeviceGetAttrs , mvr_DeviceSetAttrs .

Clients
Storage Server.

Notes
None.

Chapter 5: Mover Functions

5-10 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

5.1.6. mvr_DeviceSetAttrs

Purpose
Alter current attribute values for a device controlled by the Mover.

Syntax
#include "mvr_dceif.h"

signed32
mvr_DeviceSetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 RequestID, /* IN */
u_signed64 InSelectBitmap, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
devdesc_attr_t *DevAttrIn, /* IN */
devdesc_attr_t *DevAttrOut, /* OUT */
trpc_status_t *RPCError); /* OUT */

Description
The mvr_DeviceSetAttrs function is called to alter attribute values for a device controlled by the
Mover. This interface should NOT be used to change the current read/write position of a device
(see mvr_DeviceSetAttrs_IOD). The attribute which may be changed using this routine are:

• SecurityLabel

• RegisterBitmap

• Flags

• NumberOfErrors (reset only)

• BytesRead (reset only)

• BytesWritten (reset only)

• AdministrativeState (ST_REPAIRED, ST_LOCKED, ST_UNLOCKED)

Parameters
Binding The TRPC binding handle.

CNH Pointer to an HPSS connection handle.

RequestID Request ID for this query.

InSelectBitmap Indicates which device attributes are to be changed.

OutSelectBitmap Indicated which device attributes were changed as a result of this
request.

DevAttrIn Pointer to a devdesc_attr_t structure that contains the desired
new attribute values.

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-11
Rev. 0

DevAttrOut Pointer to a devdesc_attr_t structure that will contain the results
of the attribute changes.

RPCError Pointer to status location; will contain RPC error indication.

Return values
Upon successful completion, a value of zero (0) is returned. If an error is detected, a value is
returned that indicates the specific error.

Error conditions
HPSS_EAGAIN The Mover is currently in the process of shutting down.

HPSS_EBADF No such device.

HPSS_EBUSY Device is currently in use.

HPSS_EINVAL Invalid attribute value.

HPSS_EBADCONN Connection handle is not valid for this request.

HPSS_EPERM Client not authorized for this request.

See also
mvr_DeviceGetAttrs, mvr_DeviceGetAttrs_IOD, mvr_DeviceSetAttrs_IOD.

Clients
Storage System Management.

Notes
None.

Chapter 5: Mover Functions

5-12 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

5.1.7. mvr_DeviceSetAttrs_IOD

Purpose
Alter current attribute values for a device controlled by the Mover.

Syntax
#include “hpss_iod.h”

signed32
mvr_DeviceSetAttrs_IOD(

IOD_t *IOD, /* IN */
IOR_t *IOR); /* OUT */

Description
The mvr_DeviceSetAttrs_IOD function is called to change attribute values for a device controlled
by the Mover. This interface should be used when changing the current read/write position of a
device.

Parameters
IOD->RequestID Request identifier.

IOD->Function Set to IOD_SETDEVICEATTR.

IOD->ReqSpecInfo.DeviceID Device identifier.

IOD->ReqSpecInfo.Type Set to INFO_DEVICEATTR.

IOD->ReqSpecInfo.ReqInfo_u New device attributes.

IOR->RequestID Request identifier.

IOR->Status Status of request.

IOR->ReqSpecReply.ReqReplyType Set to REPLY_DEVICEATTR .

IOR->ReqSpecReply.ReqReply_u Returned device attributes, after completion of
operation.

Return values
Upon successful completion, a value of zero (0) is returned. If an error is detected, a value is
returned that indicates the specific error.

Error conditions
HPSS_EBADF No such device.

HPSS_EBUSY The device is busy satisfying another request.

HPSS_EINVAL Invalid attribute value(s).

HPSS_EOPNOTSUPP Attempt to set position when volume flags specifies
an unsupported media format type.

HPSS_EPERM Attempt to change device state that would be
inconsistent with the device metadata.

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-13
Rev. 0

HPSS_ERANGE Device ID specifies the generic Mover device.

See also
mvr_DeviceGetAttrs_IOD, mvr_DeviceGetAttrs, mvr_DeviceSetAttrs.

Clients
Storage Server.

Notes
None.

Chapter 5: Mover Functions

5-14 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

5.1.8. mvr_DeviceSpec

Purpose
Performs device specific operation.

Syntax
#include “hpss_iod.h”

signed32
mvr_DeviceSpec(

IOD_t *IOD, /* IN */
IOR_t *IOR); /* OUT */

Description
The mvr_DeviceSpec function is called to perform device specific operations.

Parameters
IOD->RequestID Request identifier.

IOD->Function Set to IOD_DEVICESPEC.

IOD->ReqSpecInfo.Flags Processing options. Valid values include
HOLD_RESOURCES and NO_LABEL_CHECK.

IOD->ReqSpecInfo.DeviceID Device identifier.

IOD->ReqSpecInfo.SubFunctionSet depending on function desired:

DEVICE_LOAD
DEVICE_UNLOAD
DEVICE_FLUSH
DEVICE_WRITETM (tape only)
DEVICE_LOADDISPLAY
DEVICE_READLABEL
DEVICE_WRITELABEL
DEVICE_CLEAR (disk only)

IOD->ReqSpecInfo.InfoType Set to reflect information type, if any:
INFO_LOADDISPLAY - for load display request
INFO_VOLUMEID - for write label, unload, flush,

write tape mark, clear, unload
requests

INFO_NONE - for read label, unload (if label
check bypassed)

IOD->ReqSpecInfo.ReqInfo_u. Command specific information.

IOR->RequestID Request identifier.

IOR->Status Status of request.

IOR->ReqSpecReply.ReqReplyType Set to indicate returned information, if any:
REPLY_VOLUMEID - for read label requests
REPLY_NONE - other requests.

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-15
Rev. 0

IOR->ReqSpecReply.ReqReply_u Returned command specific information.

Return values
Upon successful completion, a value of zero (0) is returned. If an error is detected, a value is
returned that indicates the specific error.

Error conditions
HPSS_EBADF No such device.

HPSS_EBUSY Device is currently in use by another request.

HPSS_EINVAL Invalid operation information.

HPSS_EIO An I/O error occurred.

HPSS_EWRPROTECT Media is read-only.

See also
None.

Clients
Storage Server, Physical Volume Library.

Notes
None.

Chapter 5: Mover Functions

5-16 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

5.1.9. mvr_MVRGetAttrs

Purpose
Query current state of the Mover.

Syntax
#include "mvr_dceif.h"

signed32
mvr_MVRGetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 RequestID, /* IN */
mover_attr_t *MvrAttrOut, /* OUT */
trpc_status_t *RPCError); /* OUT */

Description
The mvr_MVRGetAttrs function is called to query attribute values for the state of the Mover.

Parameters
Binding The TRPC binding handle.

CNH Pointer to an HPSS connection handle.

RequestID Request ID for this query.

MvrAttrOut Pointer to a mover_attr_t structure to hold the results of the
query.

RPCError Pointer to status location; will contain RPC error indication.

Return values
Upon successful completion, a value of zero (0) is returned. If an error is detected, a value is
returned that indicates the specific error.

Error conditions
HPSS_EBADCONN Connection handle is not valid for this request.

HPSS_EPERM Client not authorized for this request.

See also
mvr_MVRSetAttrs.

Clients
Storage System Management.

Notes
None.

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-17
Rev. 0

5.1.10. mvr_MVRSetAttrs

Purpose
Alter the current state attributes of the Mover.

Syntax
#include "mvr_dceif.h"

unsigned32
mvr_MVRSetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 RequestID, /* IN */
u_signed64 InSelectBitmap, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
mover_attr_t *MvrAttrIn, /* IN */
mover_attr_t *MvrAttrOut, /* OUT */
trpc_status_t *RPCError); /* OUT */

Description
The mvr_MVRSetAttrs function is called to alter attribute values for the current state of the
Mover. The attributes which may be set are:

• NumberOfRequestsProcessed (reset only).

• NumberOfDataTransfers (reset only).

• NumberOfRequestErrors (reset only).

• NumberOfBytesMoved (reset only).

• TotalMoveTime (reset only).

• RegisterBitmap.

• BufferSize.

Parameters
Binding The TRPC binding handle.

CNH Pointer to an HPSS connection handle.

RequestID Request ID for this query.

InSelectBitmap Indicates which Mover state attributes are to be changed.

OutSelectBitmap Indicated which Mover state attributes were changed as a result
of this request.

MvrAttrIn Pointer to a mover_attr_t structure that contains the desired new
Mover state attribute values.

MvrAttrOut Pointer to a mover_attr_t structure to hold the attribute values
after the operation.

Chapter 5: Mover Functions

5-18 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

RPCError Pointer to status location; will contain RPC error indication.

Return values
Upon successful completion, a value of zero (0) is returned. If an error is detected, a value is
returned that indicates the specific error.

Error conditions
HPSS_EAGAIN The Mover is currently in the process of shutting down.

HPSS_EINVAL Invalid attribute value.

HPSS_EBADCONN Connection handle is not valid for this request.

HPSS_EPERM Client not authorized for this request.

See also
mvr_MVRGetAttrs.

Clients
Storage System Management.

Notes
None.

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-19
Rev. 0

5.1.11. mvr_Read

Purpose
Read data from a device or devices controlled by the Mover.

Syntax
#include "hpss_iod.h"

signed32
mvr_Read(

IOD_t *IOD, /* IN */
IOR_t *IOR); /* OUT */

Description
The mvr_Read function is called to read data from a device controlled by the Mover and send that
data to another Mover (HPSS or client Mover). The description of the request is contained in the
structure pointed to by the IOD parameter and results of the read are returned in the structure
pointed to by the IOR parameter.

Parameters
IOD->RequestID Request identifier.

IOD->Function Set to IOD_READ.

IOD->Flags Processing options (see IOD/IOR design specification for
details). Valid values include REPLYWHENREADY and
LAST_IN_XFER.

IOD->SrcDescLength Number of source descriptors.

IOD->SinkDeskLength Number of sink descriptors.

IOD->SrcDescList List of descriptors describing data source.

IOD->SinkDescList List of descriptors describing data sink.

IOR->RequestID Request identifier.

IOR->Flags IOR_COMPLETE indicates request is complete.

IOR_ERROR indicates an error was encountered.

IOR->Status Status of the request.

IOR->SrcReplyLength Number of source reply descriptors.

IOR->SinkReplyLength Number of sink reply descriptors.

IOR->SrcReplyList List of descriptors describing data source status.

IOR->SinkReplyList List of descriptors describing data sink status.

Return values

Chapter 5: Mover Functions

5-20 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

A value of zero (0) is returned upon successful completion of the read request. If an error is
detected, a value is returned that indicates the specific error condition, possible errors are listed
below.

Error conditions
HPSS_EABORT Request was aborted.

HPSS_EBADF Invalid device identifier.

HPSS_EINVAL An offset or resulting offset would exceed the capability of the
device.

HPSS_EIO An I/O error occurred.

HPSS_EOPNOTSUPP Requested operation is not supported (e.g., IPI-3 data transfer
request not supported by Mover).

HPSS_ERANGE A value specified in the IOD is out of range.

HPSS_ESYSTEM Operating system service failed.

HPSS_ETRANSFER Transfer of data to client failed.

See also
mvr_Write.

Clients
Storage Server.

Notes
None.

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-21
Rev. 0

5.1.12. mvr_ServerGetAttrs

Purpose
Query current state of the Mover’s server object.

Syntax
#include "mvr_dceif.h"

signed32
mvr_ServerGetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 RequestID, /* IN */
hpss_server_attrib_t *SrvrAttrOut, /* OUT */
trpc_status_t *RPCError); /* OUT */

Description
The mvr_ServerGetAttrs function is called to query attribute values for the state of the Mover’s
server object.

Parameters
Binding The TRPC binding handle.

CNH Pointer to an HPSS connection handle.

RequestID Request ID for this query.

SrvrAttrOut Pointer to a server_attr_t structure to hold the results of the
query.

RPCError Pointer to status location; will contain RPC error indication.

Return values
Upon successful completion, a value of zero (0) is returned. If an error is detected, a value is
returned that indicates the specific error.

Error conditions
HPSS_EBADCONN Connection handle is not valid for this request.

HPSS_EPERM Client not authorized for this request.

See also
mvr_ServerSetAttrs.

Clients
Storage System Management.

Notes
The hpss_server_attrib_t structure is the common HPSS server object attribute structure.

Chapter 5: Mover Functions

5-22 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

5.1.13. mvr_ServerSetAttrs

Purpose
Alter the current state attributes of the Mover’s server object.

Syntax
#include "mvr_dceif.h"

signed32
mvr_ServerSetAttrs(

trpc_handle_t Binding, /* IN */
hpss_connect_handle_t *CNH, /* IN */
signed32 RequestID, /* IN */
u_signed64 InSelectBitmap, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
hpss_server_attrib_t *SrvrAttrIn, /* IN */
hpss_server_attrib_t *SrvrAttrOut, /* OUT */
trpc_status_t *RPCError); /* OUT */

Description
The mvr_ServerSetAttrs function is called to alter attribute values for the current state of the
Mover’s object. The attributes which may be set are:

• RegisterBitmap.

• AdministrativeState.

ST_SHUTDOWN

ST_HALT

ST_REINITIALIZED

ST_REPAIRED

Parameters
Binding The TRPC binding handle.

CNH Pointer to an HPSS connection handle.

RequestID Request ID for this query.

InSelectBitmap Indicates which server state attributes are to be changed.

OutSelectBitmap Indicated which server state attributes were change as a result of
this request.

SrvrAttrIn Pointer to a server_attr_t structure that contains the desired new
server state attribute values.

SrvrAttrOut Pointer to a server_attr_t structure to hold the attribute values
after the operation.

RPCError Pointer to status location; will contain RPC error indication.

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-23
Rev. 0

Return values
Upon successful completion, a value of zero (0) is returned. If an error is detected, a value is
returned that indicates the specific error.

Error conditions
HPSS_EAGAIN The Mover is currently in the process of shutting down.

HPSS_EINVAL Invalid attribute value.

HPSS_EBADCONN Connection handle is not valid for this request.

HPSS_EPERM Client not authorized for this request.

See also
mvr_ServerGetAttrs.

Clients
Storage System Management.

Notes
The hpss_server_attrib_t structure is the common HPSS server object attribute structure.

Chapter 5: Mover Functions

5-24 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

5.1.14. mvr_Write

Purpose
Write data to a device or devices controlled by the Mover.

Syntax
#include “hpss_iod.h”

signed32
mvr_Write(

IOD_t *IOD, /* IN */
IOR_t *IOR); /* OUT */

Description
The mvr_Write function is called to receive data from another Mover (either HPSS or client
Mover) and write that data to devices controlled by the Mover.

Parameters
IOD->RequestID Request identifier.

IOD->Function Set to IOD_WRITE.

IOD->Flags Processing options (see IOD/IOR design specification for
details). Valid values include REPLYWHENREADY and
LAST_IN_XFER.

IOD->SrcDescLength Number of source descriptors.

IOD->SinkDeskLength Number of sink descriptors.

IOD->SrcDescList List of descriptors describing data source.

IOD->SinkDescList List of descriptors describing data sink.

IOR->RequestID Request identifier.

IOR->Flags IOR_COMPLETE indicates request is complete.

IOR_ERROR indicates an error was encountered.

IOR->Status Status of the request.

IOR->SrcReplyLength Number of source reply descriptors.

IOR->SinkReplyLength Number of sink reply descriptors.

IOR->SrcReplyList List of descriptors describing data source status.

IOR->SinkReplyList List of descriptors describing data sink status.

Return values
A value of zero (0) is returned upon successful completion of the write request. If an error is
detected, a value is returned that indicates the specific error.

Error conditions

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-25
Rev. 0

HPSS_EABORT Request was aborted.

HPSS_EBADF Invalid device identifier.

HPSS_EOM End of media reached during write.

HPSS_EINVAL An offset or resulting offset would exceed the capability of the
device.

HPSS_EIO An I/O error occurred.

HPSS_EWRPROTECT Device indicated is read-only (is this error standard enough - it is
not POSIX, but is in AIX).

HPSS_EOPNOTSUPP Requested operation is not supported (e.g., IPI-3 data transfer
request not supported by Mover).

HPSS_ERANGE A value specified in the IOD is out of range.

HPSS_ESYSTEM Operating system service failed.

HPSS_ETRANSFER Transfer of data from client failed.

See also
mvr_Read.

Clients
Storage Server.

Notes
None.

Chapter 5: Mover Functions

5-26 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

5.2. Data Definitions

This section describes key internal data definitions and all externally used data definitions which are
provided by this subsystem. A data definition may be represented by constructs such as data structures
and constants. For each data definition, a description, format (including parameter descriptions), and
clients which access the data definition are provided.

5.2.1. Mover State Structure - mover_attr_t

Description

The Mover State Structure describes the current state of the Mover. This structure contains all of the
information than can be obtained and/or modified through the System Management interface. Fields in
the structure contain the overall Mover state, and Mover statistics.

Format

The Mover State Attribute Structure has the following format:

typedef struct mover_attr {
unsigned32 NumberOfRequestTasks;
unsigned32 NumberOfActiveRequests;
unsigned32 NumberOfRequestsProcessed;
unsigned32 NumberOfDataTransfers;
unsigned32 NumberOfRequestErrors;
signed32 BufferSize;
u_signed64 NumberOfBytesMoved;
u_signed64 RegisterBitmap;
timestamp_t TotalMoveTime;
timestamp_t TimeOfLastGetState;
timestamp_t TimeOfLastStatReset;
} mover_attr_t;

NumberOfRequestTasks

This field contains the number of tasks that are currently processing requests for this Mover. This field
can be only be queried (i.e., cannot be set).

NumberOfActiveRequests

This field contains the number of I/O requests that are currently active. This field may be used to
determine whether the Mover has completely suspended or is waiting for requests to complete.

NumberOfRequestsProcessed

This field contains the number of requests that the Mover has processed since it was initialized, or the
Mover statistics were reset.

NumberOfDataTransfers

This field contains the number of data transfers that the Mover has processed since it was initialized, or
the Mover statistics were reset.

NumberOfRequestErrors

This field contains the number of requests that have encountered errors since the Mover was initialized or
the Mover statistics were reset.

BufferSize

This field contains the size of the buffers to be used by the Mover to perform double buffering during data
transfers.

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-27
Rev. 0

NumberOfBytesMoved

This field contains the number of bytes that have been transferred by the Mover.

TotalMoveTime

This field contains the amount of elapsed time taken to transfer the NumberOfBytesMoved bytes that have
been transferred by the Mover.

TimeOfLastGetState

This field contains the time last that a client queried the state of the Mover. This field can only be queried.

TimeOfLastStatReset

This field contains the time that the Mover statistics were last reset. This field can only be queried.

Clients

The following clients access the data definition:

Storage System Management.

5.2.2. Device Descriptor - devdesc_attr_t

Description

The Device Descriptor contains information relating to the devices that the Mover controls.

Format

The Device Descriptor has the following format:

typedef struct devdesc_attr {
device_desc_md_t DevDescMetaData;
device_desc_record_t DevDescRecord;

} devdesc_attr_t;

DevDescMetaData

This field contains the persistent attributes for a device.

typedef struct device_desc_md {
signed32 Version;
char DeviceName[64];
hpss_media_t DeviceType;
unsigned32 DeviceID;
unsigned32 Flags;
unsigned32 SecurityLabel;
unsigned32 MediaBlockSize;
signed32 OperationalState;
signed32 UsageState;
signed32 AdministrativeState;
u_signed64 RegisterBitmap;
u_signed64 NumberOfBytes;
uuid_t MvrID;

} device_desc_md_t;

Version

This field contains the version number of the device metadata structure.

DeviceName

This field contains the pathname of the device.

Chapter 5: Mover Functions

5-28 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Device_Type

This field contains the type of the device.

DeviceID

This field contains the Mover device identifier associated with this device.

Flags

This field contains flags indicating the default state and capabilities for the device. Valid values
include:

MVR_DEV_READY - Device is allowed to handle requests.

MVR_DEV_READ_ALLOWED - Device allows read requests.

MVR_DEV_WRITE_ALLOWED - Device allows write requests.

MVR_DEV_WRITE_ONCE - WORM device.

MVR_DEV_MOUNTABLE - Device supports removable media.

MVR_DEV_LOCATE_SUPPORT - Device supports absolute positioning.

MVR_DEV_COMPRESS_SUPP - Device support data compression.

MVR_DEV_IPI3_SUPP - Device supports IPI-3 third party data transfers.

MVR_DEV_WTM_ZERO_TO_SYNC - Device supports a write tapemark command with
zero count to synchronize device buffers to the media.

MVR_DEV_NDELAY_SUPP - Device supports opening with O_NDELAY set, followed by
subsequent I/O commands.

MVR_DEV_SHARED_USE - Mover should allow multiple Mover tasks to command the
device simultaneously (anticipated usage for disk devices).

SecurityLabel

This field contains the security label associated with the device.

OperationalState

This field contains the current operational state (enabled, disabled, suspect, etc.) of the device.

UsageState

This field contains the current usage state (idle, active, busy, etc.) of the device.

AdministrativeState

This field contains the current administrative state of the device.

RegisterBitmap

This field contains a bitmap that indicates which device attributes are registered for notification of
value changes.

NumberOfBytes

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-29
Rev. 0

This field contains the number of bytes that the device contains. If this value is not known (e.g.,
for tape devices) this value will have all bits turned on.

DevDescRecord

This field contains the volatile attributes for a device, that will be reinitialized during Mover initialization.

typedef struct device_desc_record {
unsigned32 State;
unsigned32 SetState;
unsigned32 VolFlags;
unsigned32 NumberOfErrors;
unsigned32 BlockSize;
unsigned32 AuxAddrInfo;
signed32 DeviceFD;
signed32 TaskID[64]
char VolumeID[8];
u_signed64 BytesRead;
u_signed64 BytesWritten;
positiondesc_t Position;

} device_desc_record_t;

State

This field contains the current state of the device. It cannot be set; state changed should be made
by setting the SetState field. Valid values include:

MVR_DEV_MOUNTED - If this bit is set, media is currently mounted on the device.

MVR_DEV_OPEN_READ - If this bit is set, the device is opened for reading.

MVR_DEV_OPEN_WRITE - If this bit is set, the device is open for writing.

MVR_DEV_INUSE - If this bit is set, the device is currently in use by a Mover task.

MVR_DEV_ERROR - If this bit is set, the device is in an error condition and is not ready
for use.

MVR_DEV_EOT - If this bit is set, the media is currently at EOT.

MVR_DEV_MIDBLOCK - If this bit is set, the Mover’s position of this device is logically in
the middle of a media block.

MVR_DEV_UNSYNCED - If this bit is set, there has been data written to the device that is
not guaranteed to have been flushed to the media.

SetState

This field contains indication of a new state to which the Mover has been requested to change.
Valid values include:

MVR_DEV_TOGGLE_READ - If this bit is set, the MVR_DEV_READALLOWED bit in the
State field is toggled.

MVR_DEV_TOGGLE_WRITE - If this bit is set, the MVR_DEV_WRITEALLOWED bit in
the State field is toggled.

Chapter 5: Mover Functions

5-30 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

MVR_DEV_TOGGLE_INUSE - If this bit is set, the MVR_DEV_INUSE bit in the State
field is toggled.

MVR_DEV_RESET_NUMERROR - If this bit is set, the NumberOfErrors field will be reset
to zero.

MVR_DEV_RESET_BYTESREAD - If this bit is set, the BytesRead field will be reset to
zero.

MVR_DEV_RESET_BYTESWRITTEN - If this bit is set, the BytesWritten field will be
reset to zero.

MVR_DEV_LOCKED - If this bit is set, the device will be locked.

MVR_DEV_UNLOCKED - If this bit is set, the device will be unlocked.

MVR_DEV_REPAIRED - If this bit is set, the device’s OperationalState will be reset.

VolFlags

This field contains flags which describe the media format currently associated with the media
loaded on the drive. Valid format types include MVR_DEV_HPSS_VOL (HPSS format) and
HPSS_DEV_UNITREE_VOL (NSL UniTree format). For UniTree formats, another flag -
MVR_DEV_VOL_USE_BLK_HDRS - is also supported (indicates whether tape contains per
block headers).

NumberOfErrors

This field contains the number of error that have been encountered on the device.

BlockSize

This field contains the current size of the blocks that will be written to the device.

AuxAddrInfo

This field contains the number of blocks to be written between tapemarks on the device for tape;
starting data block information for disk.

DeviceFD

This field contains the device driver associated with the open device. If the device is not currently
open, this field contains a value of negative one (-1).

TaskID

This field contains an array identifying the Mover tasks that currently control the device.

VolFlags

This field contains the volume label for the media currently loaded on the device.

BytesRead

This field contains the number of bytes that have been read from the device.

BytesWritten

This field contains the number of bytes that have been written to the device.

Position

This field contains the current relative and absolute device positioning information, if available.

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-31
Rev. 0

Setting this field causes the media to be repositioned.

typedef positiondesc {
signed32 Whence;
u_signed64 Granularity;
relative_address_t RelativePosition;
absolute_address_t AbsolutePosition;

} position_desc_t;

Whence

This field describes the origin to use in position the device. Valid values are (0) for an
origin from the beginning of the media, and (1) for an origin from the current position of
the media.

Granularity

This field contains the granularity at which to interpret the Offset field within the relative
position structure.

RelativePosition

This field contains relative positioning information, including the partition, section and
offset.

typedef struct relative_address {
byte Version;
byte Reserved;
unsigned16 Partition;
unsigned32 Section;
u_signed64 Offset;

} relative_address_t;

Version

This field contains the version number of the relative position structure.

Reserved

This field is included for alignment purposes only.

Partition

This field contains the partition number, for devices that support multiple
partitions per volume (e.g., DD2).

Section

This field contains the section number, which will indicate the number of
tapemarks to be skipped.

Offset

This field contains the byte offset within the section, which will be used to
determine the exact position within a section, including any blocks which may
have to be skipped.

AbsolutePosition

This field contains absolute positioning information, if available.

typedef struct absolute_address {
byte AbsAddr[4];

} absolute_address_t;

AbsAddr

Chapter 5: Mover Functions

5-32 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

This field contains the device specific positioning information. This field can be
used to hold tach counts for 3480/3490 type devices used for high speed
positioning. A value of zero (0) indicates that absolute positioning information is
not present.

Clients

The following clients access the data definition:

Storage Server, Storage System Management.

5.2.3. Mover Configuration Structure - mvr_config_t

Description

The Mover Configuration Structure contains the information which the Mover must be able to access to
perform successful initialization. This information will be stored in a Mover specific configuration metadata
file..

Format

The Mover Configuration Structure has the following format:

typedef mvr_config {
uuid_t MvrID;
u_signed64 MoverRegisterBitmap;
u_signed64 GenericDeviceRegisterBitmap;
u_signed64 EncryptionKey;
signed32 MvrBufferSize;
idl_char DeviceConfigFileName[HPSS_MAX_PATH_NAME];
idl_char MvrTcpPathName[HPSS_MAX_PATH_NAME];
idl_char MvrHostname[HPSS_MAX_HOSTNAME];
unsigned16 MvrTcpPort;
unsigned16 Reserved1;

} mvr_config_t;

MvrID

This field contains the ID of the server to which this entry pertains.

MoverRegisterBitmap

This field contains the initial SSM registration bitmap for the Mover managed object.

GenericDeviceRegisterBitmap

This field contains the SSM registration bitmap for the Mover generic device. This value will be ORed with
each device’s individual SSM registration bitmap to determine if a notification should be generated.

EncryptionKey

This field contains an encryption key used in validating connections established with the Mover.

MvrBufferSize

This field contains the size to be used for the buffers utilized by the Mover to perform double buffering.

DeviceConfigFileName

This field contains the name of the file that contains the devices defined for this Mover.

MvrTcpPathName

This field contains the pathname of the program which runs the Mover’s IOD interface code.

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-33
Rev. 0

MvrHostname

This field contains the host interface name that the Mover should use for listening for connection for its
IOD interface.

MvrTcpPort

This field contains the IP port number on which the Mover is to listen for connections for its IOD interface.

Reserved1

This field is unused, and is included for padding purposes only.

Clients

The following clients access the data definition:

Mover, Storage System Management.

5.2.4. Mover Protocol Message Structures

Description

The Mover protocol utilizes a number of structures that are passed between the active and passive sides
of a data transfer. An initiator structure is used to relay transfer window and addressing information. A
completion structure is used to relay status information about a piece of the transfer. Address structures
are used to relay specific endpoint addressing information.

Format
The Mover protocol initiator message has the following format:
typedef struct initiator_msg {

u_signed64 Delimiter;
unsigned32 Flags;
unsigned32 Type;
u_signed64 Offset;
u_signed64 Length;
u_signed64 BlockSize;
u_signed64 StripeWidth;
u_signed64 Stride;
u_signed64 TotalLength;
char SecurityTicket[8];
u_signed64 CheckSum;

} initiator_msg_t;

Delimiter

Contains a fixed value, used to mark the beginning of the message.

Flags

A bit vector containing transfer options. Valid values are:

MVRPROT_RESPONDER - sender of message will be responder.

MVRPROT_ADDR_FOLLOWS - an address message will immediately follow this
message.

MVRPROT_COMP_REPLY - the initiator requests a completion message.

MVRPROT_HOLD_RESOURCES - keep connection open after current piece of transfer has
been completed.

Chapter 5: Mover Functions

5-34 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Type

Contains the data transfer mechanism identifier. Valid values are:

NET_ADDRESS - transfer via TCP/IP.

IPI_ADDRESS - transfer via IPI-3 over HIPPI.

SHM_ADDRESS - transfer via a shared memory segment.

Offset

Contains the transfer offset for this piece of the data transfer.

Length

Contains the length of this piece of the data transfer.

BlockSize

Currently unused (for future exchange of striping information).

StripeWidth

Currently unused (for future exchange of striping information).

Stride

Currently unused (for future exchange of striping information).

TotalLength

Contains the total length, from the current transfer offset, for which the sender will control the transfer.
This information is used to optimize passive side read operations (during internal HPSS data transfers).

SecurityTicket

Currently unused.

CheckSum

A checksum calculated for this message, to verify correct message transmission.

The Mover protocol completion message structure has the following format:

typedef struct completion_msg {
u_signed64 Delimiter;
unsigned32 Flags;
unsigned32 Status;
u_signed64 BytesMoved;
char SecurityTicket[8];
u_signed64 CheckSum;

} completion_msg_t;

Delimiter

Contains a fixed value, used to mark the beginning of the message.

Flags

Currently unused.

Status

Contains the completion status for the current piece of the transfer.

Chapter 5: Mover Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 5-35
Rev. 0

BytesMoved

Contains the number of bytes successfully transferred.

SecurityTicket

Currently unused.

CheckSum

A checksum calculated for this message, to verify correct message transmission.

The Mover protocol network address structure has the following format:

typedef struct initiator_ipaddr {
u_signed64 Delimiter;
unsigned32 Flags;
netaddress_t IpAddr;
char SecurityTicket[8];
u_signed64 CheckSum;

} initiator_ipaddr_t;

Delimiter

Contains a fixed value, used to mark the beginning of the message.

Flags

Currently unused.

IpAddr

The TCP/IP address information (see the IOD/IOR Design Specification for details).

SecurityTicket

Currently unused.

CheckSum

A checksum calculated for this message, to verify correct message transmission.

The Mover protocol IPI-3 address structure has the following format:

typedef struct initiator_ipi3addr {
u_signed64 Delimiter;
unsigned32 Flags;
ipiaddress_t Ipi3Addr;
char SecurityTicket[8];
u_signed64 CheckSum;

} initiator_ipi3addr_t;

Delimiter

Contains a fixed value, used to mark the beginning of the message.

Flags

Currently unused.

Ipi3Addr

The IPI-3 address information (see the IOD/IOR Design Specification for details).

SecurityTicket

Chapter 5: Mover Functions

5-36 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Currently unused.

CheckSum

A checksum calculated for this message, to verify correct message transmission.

The Mover protocol shared memory segment address structure has the following format:

typedef struct initiator_shmaddr {
u_signed64 Delimiter;
unsigned32 Flags;
shmaddress_t ShmAddr;
char SecurityTicket[8];
u_signed64 CheckSum;

} initiator_shmaddr_t;

Delimiter

Contains a fixed value, used to mark the beginning of the message.

Flags

Currently unused.

ShmAddr

The shared memory segment information (see the IOD/IOR Design Specification for details).

SecurityTicket

Currently unused.

CheckSum

A checksum calculated for this message, to verify correct message transmission.

Clients

The following clients access the data definition:

Mover, Client API.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-1
Rev. 0

6. Physical Volume Library Functions

This chapter specifies the Physical Volume Library programming interface. Specifically, the following
information is provided:

Application Programming Interfaces (APIs)

Data Definitions

6.1. API Functions

This section describes all APIs which are provided for use by another HPSS subsystem or by a client
external to HPSS. The API interface specification includes the following information:

Name

Syntax

Description

Parameters

Return Values

Error Conditions

Related Information

Clients

Notes

Chapter 6: Physical Volume Library Functions

6-2 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

6.1.1. pvl_AllocateVol

Purpose
Allocate a volume to a particular client.

Syntax
#include "pvl_interface.h"

signed32 pvl_AllocateVol(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
media_type_t *Media, /* IN */
uuid_t *PVR, /* IN */
vol_t *Volume); /* IN/OUT */

Description
If the volume is currently in the scratch state, the volume is allocated to the client calling the
function.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Media Media type of volume to allocate if the volume argument is
NULL_CART. If media is NULL and no specific volume is given,
an arbitrary scratch volume will be allocated to the client.

PVR PVR from which to select a volume when a specific volume is not
allocated. May be left NULL to get a cartridge from any PVR.
Will be ignored when a specific volume is allocated.

Volume Specific volume to allocate. When specified, it overrides the
Media argument and the PVR argument. If volume is not
specified then the Media and PVR are used to determine which
volume to allocate.

The ID of the allocated volume is returned to the client in this
field regardless of the method used to select the volume.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. If an error is returned, the value of volume is undefined.

Error conditions
HPSS_ENOTYET Server administrative set not yet Unlocked.

HPSS_EALREADY Volume is already allocated to client.

HPSS_EINVAL The volume is not currently in a scratch state.

HPSS_EMDM Metadata manager failure.

HPSS_ENOENT No scratch volume found which matches the request.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-3
Rev. 0

HPSS_EPERM Generic volume ID invalid for this operation.

See also
pvl_DeallocateVol.

Clients
Storage Server.

Notes
Selection of the volume by media type and/or PVR will not be supported in the current HPSS
because scratch pools are not supported.

Chapter 6: Physical Volume Library Functions

6-4 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

6.1.2. pvl_CancelAllJobs

Purpose
Cancels all jobs associated with a specific connection handle.

Syntax
#include "pvl_interface.h"

signed32 pvl_CancelAllJobs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch); /* IN */

Description
Releases all PVL resources held by the client making the call (for example, cancels pending
mounts, mounts which have actually occurred, pending imports and exports, synchronous
mounts, etc.).

This function will be configured as the RPC rundown routine in the PVL server initialization code.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOENT No job entry was not found.

See also
pvl_MountNew, pvl_MountCommit, pvl_Move, pvl_Import, pvl_Export.

Clients
Storage Server, RPC Rundown Routine.

Notes
This function will dismount any volumes which are part of a job with which the client was involved.
This includes volumes that were requested by other clients.

The job will remain in the queue while any mounted volumes are being dismounted.

Any notifications pending for the canceled job will be sent with an error code indicating that the job
was canceled. This includes notifications to clients that had volumes included as part of a job that
is being canceled.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-5
Rev. 0

6.1.3. pvl_CreateDrive

Purpose
Create new drive entry.

Syntax
#include "pvl_interface.h"

signed32 pvl_CreateDrive(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
drive_data_t *DriveData); /* IN */

Description
Create metadata for a new drive and add the drive to the PVL’s tables.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

DriveData New drive to create.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_EINVAL Fixed PVL drive table exceeded or PVR specified in the input

drive information does not exist.

HPSS_EEXIST Drive already exists.

HPSS_EMDM Metadata manager failure.

See also
pvl_DeleteDrive.

Clients
Storage System Manager.

Notes
A maximum of 10 new drives can be created between restarts of the PVL with this API. Drives
may be created directly in metadata while the PVL is not running..

Chapter 6: Physical Volume Library Functions

6-6 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

6.1.4. pvl_DeallocateVol

Purpose
Return a volume to the scratch pool.

Syntax
#include "pvl_interface.h"

signed32 pvl_DeallocateVol(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
vol_t *Vol); /* IN */

Description
If the volume is currently allocated by the client calling pvl_DeallocateVol, then the volume is
returned to the scratch pool.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Vol Volume to return to the scratch pool.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOTYET Server administrative set not yet Unlocked.

HPSS_EALREADY Volume is already deallocated(scratch).

HPSS_EOWNER Volume not currently allocated to client.

HPSS_EMDM Metadata manager failure.

HPSS_EPERM Generic volume ID invalid for this operation.

See also
pvl_AllocateVol.

Clients
Storage Server, Storage System Manager.

Notes
All volumes on a cartridge must be deallocated before a cartridge can be exported unless the
client calling pvl_Export is the client that allocated the volumes on the cartridge.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-7
Rev. 0

6.1.5. pvl_DeleteDrive

Purpose
Delete drive entry.

Syntax
#include "pvl_interface.h"

signed32 pvl_DeleteDrive(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
drive_t DriveID); /* IN */

Description
Delete drive from the PVL’s tables.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

DriveID Drive to delete.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_EBUSY Operational state is not disabled or the drive is currently busy.

HPSS_EXIST Drive does not exist.

HPSS_EMDM Metadata call failure.

See also
pvl_CreateDrive.

Clients
Storage System Manager.

Notes
None.

Chapter 6: Physical Volume Library Functions

6-8 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

6.1.6. pvl_DismountDrive

Purpose
Forces the dismount of a specified drive.

Syntax
#include "pvl_interface.h"

signed32 pvl_DismountDrive(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
drive_t Drive); /* IN */

Description
Dismount any physical volume in a drive. This function will probably be called by the SSM if the
SS fails to dismount some volumes. It will only be used for error recovery.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Drive Drive to dismount.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_EOWNER Client is not registered with job ID. Does not apply to SSM.

HPSS_EEXIST Invalid drive ID specified.

HPSS_EBUSY Drive specified is currently dismounting a cartridge.

See also
pvl_CancelAllJobs, pvl_DismountJobId, pvl_DismountVolume.

Clients
Storage System Manager.

Notes
Any asynchronous notifications pending for the canceled job will be sent with an error code
indicating that the job was canceled. This includes asynchronous notifications to clients that had
volumes included as part of a job that is being canceled.

The job remains in the queue while any mounted volumes are being dismounted.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-9
Rev. 0

6.1.7. pvl_DismountJobId

Purpose
Dismounts all volumes associated with a specific job.

Syntax
#include "pvl_interface.h"

signed32 pvl_DismountJobId(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
job_id_t JobId); /* IN */

Description
Dismount all physical volumes associated with a job. The job is canceled regardless of the state it
is in when pvl_DismountJobId is called. The job is canceled even if pvl_MountCommit has not
been called.

This function can also be used to cancel a pending Import, Export, or Move operation.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

JobId Job ID.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_EEXIST Job ID does not exist.

HPSS_EOWNER Client is not registered with job ID.

See also
pvl_Mount, pvl_MountNew, pvl_MountCommit, pvl_Move, pvl_Import, pvl_Export,
pvl_DismountVolume, pvl_DismountDrive.

Clients
Storage Server, Storage System Manager.

Notes
No mount optimization is done currently. If a dismount is requested for a volume and a mount
request for the volume is pending, the volume may be dismounted and remounted. This is terribly
inefficient, but shouldn’t matter much for the current release since we have one Storage Server
that won’t dismount a volume until it is done with the volume.

Any notifications pending for the canceled job will be sent with an error code indicating that the job
was canceled. This includes notifications to clients that had volumes included as part of a job that
is being canceled.

The job remains in the queue while any mounted volumes are being dismounted.

Chapter 6: Physical Volume Library Functions

6-10 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

6.1.8. pvl_DismountVolume

Purpose
Dismounts a single volume.

Syntax
#include "pvl_interface.h"

signed32 pvl_DismountVolume(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
job_id_t JobId, /* IN */
vol_t *Vol); /* IN */

Description
Dismount a specific physical volume. This function can be used to remove a volume from a job
that has not been committed. It can also be used to dismount a single volume from a set of
mounted volumes if the client is done using that particular volume.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

JobId Job ID.

Vol Volume to dismount.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOENT Volume not part of job ID.

HPSS_EEXIST Job ID does not exist.

HPSS_EOWNER Client is not registered with job ID.

See also
pvl_Mount, pvl_MountNew, pvl_MountAdd, pvl_MountCommit, pvl_DismountJobId,
pvl_DismountDrive.

Clients
Storage Server.

Notes
No notifications will be sent even if some are pending for the volume.

The job remains in the queue while any mounted volumes are being dismounted.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-11
Rev. 0

6.1.9. pvl_DriveGetAttrs

Purpose
Get the current values of the attributes of a drive.

Syntax
#include "pvl_interface.h"

signed32 pvl_DriveGetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
drive_t Drive, /* IN */
drive_data_t *DriveData); /* OUT */

Description
Returns the value of all Drive attributes for the drive specified by the Drive argument.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Drive Drive to query.

DriveData Attributes of Drive Managed Object.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. If an error is returned, the value of DriveData is undefined.

Error conditions
HPSS_EEXIST Invalid drive ID specified.

See also
pvl_DriveSetAttrs.

Clients
Storage System Manager.

Notes
None.

Chapter 6: Physical Volume Library Functions

6-12 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

6.1.10. pvl_DriveSetAttrs

Purpose
Set the current values of the attributes of a drive.

Syntax
#include "pvl_interface.h"

signed32 pvl_DriveSetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
u_signed64 InSelectBitmap, /* IN */
drive_data_t *InDriveData, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
drive_data_t *OutDriveData); /* OUT */

Description
Sets drive attributes to the value of the corresponding field of the attributes argument. Only those
attributes identified by the InSelectBitmap field are set.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

InSelectBitmap Bitmap indicates which object attributes are to be set.

InDriveData New values of attributes to be set.

OutSelectBitmap Bitmap indicates which attributes were actually modified.

OutDriveData Complete managed object including the updated fields.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_EINVAL Attempted to set a read-only attribute.

HPSS_EEXIST Invalid drive ID specified.

HPSS_EBUSY Unable to set attribute, drive is busy.

HPSS_EMDM Metadata manager failure.

HPSS_EAUTH Client is not authorized to set drive(not SSM or not the PVR in
which drive resides).

See also
pvl_DriveGetAttrs.

Clients
Storage System Manager.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-13
Rev. 0

Notes
If the RegisterBitmap field is set, it will be stored in metadata and remain set across PVL restarts.

If the Drive contains the ID of the generic drive object (PVL_GENERIC_DRIVE_ID) then only the
RegisterBitmap can be set. This bitmap will be ORed with the RegisterBitmap attribute of each
drive object to determine if a notification is to be sent to the SSM.

The following table indicates which fields can be modified through this function:

NO DriveID

NO Version;

YES RegisterBitmap

NO PVR

NO DriveAddress

NO DriveType

NO DriveInfo

YES MaintenanceDate

NO AllocatedClientID

NO MountedVolume

YES MountsSinceLastMaint

YES OperationalState

NO UsageState

YES AdministrativeState

NO DriveState

NO MvrHost

NO MvrPort

Chapter 6: Physical Volume Library Functions

6-14 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

6.1.11. pvl_Export

Purpose
Exports a cartridge from the HPSS system.

Syntax
#include "pvl_interface.h"

signed32 pvl_Export(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
cart_t *Cart); /* IN */

Description
Remove all information about the specified cartridge from the PVL and PVR. The cartridge is
physically exported from the system.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Cart Cartridge to export.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_EINVAL Attempted to export the generic cartridge record.

HPSS_EOWNER One or more volumes on the cartridge is not allocated to client.

HPSS_ENOTYET Server administrative state not yet Unlocked.

HPSS_EEXPORT Export already pending for cartridge.

HPSS_EMDM Metadata manager failure.

HPSS_ENOENT Cartridge not found.

HPSS_ENOMOUNT Unable to eject the cartridge.

See also
pvl_Import.

Clients
Storage System Manager.

Notes
A cartridge can be exported if all volumes are in the SCRATCH state or if the client requesting the
export is the client that has all volumes allocated. Even the Storage System Manager will not be
allowed to export a volume allocated by another client. The Storage System Manager must first
scratch the volume or force the client to do so.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-15
Rev. 0

6.1.12. pvl_Import

Purpose
Imports a new cartridge or fixed media(disk) into an HPSS system.

Syntax
#include "pvl_interface.h"

signed32 pvl_Import(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
media_type_t *Media, /* IN */
cart_t *Cart, /* IN */
unsigned32 ImportType, /* IN */
side_t Sides, /* IN */
uuid_t *Pvr, /* IN */
location_t *Location, /* IN */
manufacturer_t *Manu, /* IN */
lot_number_t *Lot); /* IN */

Description
Import a cartridge or fixed media into the HPSS system. An internal label is written on each
volume of the media . The date entered into service is set to the current date and time. The
external label on the cartridge is verified if possible.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Media Media type of the cartridge to be imported.

Cart External label on the cartridge.

ImportType Type of import. One of:

SCRATCH The media will be imported unless it has an
ANSI or HPSS label which is different than the
Cart specified.

DEFAULT The media will be imported only if the ANSI or
HPSS label is the same as that specified as
input or the media has no data(two tapemarks at
the start of the tape).

Sides Number of sides (physical volumes) on the Cart (PVR).

Pvr PVR that has the new Cart.

Location Location of Cart in Pvr (defined by the PVR).

Manu String identifying the manufacturer of Cart (client defined).

Lot String identifying the manufacturing or purchase lot of Cart (client
defined).

Chapter 6: Physical Volume Library Functions

6-16 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_EEXIST Cartridge ID already exists in HPSS.

HPSS_EMDM Metadata manager failure.

HPSS_EINVAL Fixed media drive is not in the drive table or the specified PVR is
not valid.

HPSS_ENOTYET Server administrative set not yet Unlocked.

HPSS_EDISABLED All drives of import type are disabled.

HPSS_ENOMOUNT Unable to mount the cartridge to write label.

See also
pvl_Export.

Clients
Storage System Manager.

Notes
None.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-17
Rev. 0

6.1.13. pvl_Mount

Purpose
Synchronously mount a single volume.

Syntax
#include "pvl_interface.h"

signed32 pvl_Mount(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
vol_t *Vol, /* IN */
signed32 DriveOption, /* IN */
signed32 DriveCount, /* IN */
drive_t *DriveList, /* IN */
job_id_t *JobId, /* OUT */
drive_data_t *DriveMounted); /* OUT */

Description
Mount a single volume. This function is provided as a short cut to the pvl_MountNew,
pvl_MountAdd, and pvl_MountCommit combination of functions. pvl_Mount runs
synchronously and may only be used when mounting a single volume, not a set of volumes.

This function might also be used by UNIX tape daemons to mount DEFAULT volumes.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Vol Volume ID to be mounted.

DriveOption One of the following:

PVL_ANY any drive may be used. DriveList is
ignored.

PVL_INCLUDE only drives in drive list may be used.

PVL_EXCLUDE any drives except those in DriveList
may be used.

DriveCount The length of DriveList.

DriveList The list of drives that may be (or may NOT be) used for the
mount.

JobId Pointer to client allocated space to return the job ID.

DriveMounted Pointer to client allocated space to return the ID of the drive that
was mounted.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. On error, jobId and driveMounted are undefined.

Chapter 6: Physical Volume Library Functions

6-18 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Error conditions
HPSS_EACCES Volume not allocated to client.

HPSS_EEXPORT Volume is scheduled to be exported.

HPSS_EMDM Metadata manager failure.

HPSS_ENOENT Invalid volume ID specified.

HPSS_ENOMEM Not enough memory.

HPSS_ENOMOUNT Mount failed.

HPSS_ENOTYET Server administrative set not yet Unlocked.

HPSS_EINVAL Volume/Drive type mismatch.

HPSS_EEXIST PVR for Volume doesn’t exist.

HPSS_EDISABLED All required drives are disabled.

See also
pvl_DismountJobId, pvl_DismountVolume, pvl_DismountDrive.

Clients
UNIX Application.

Notes
None.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-19
Rev. 0

6.1.14. pvl_MountAdd

Purpose
Add a volume to a set of volumes to be mounted for the specified job.

Syntax
#include "pvl_interface.h"

signed32 pvl_MountAdd(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
job_id_t JobId, /* IN */
vol_t *Vol, /* IN */
signed32 DriveOption, /* IN */
signed32 DriveCount, /* IN */
drive_t *DriveList); /* IN */

Description
Add another volume to the list for a specific mount request.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

JobId Job ID.

Vol Volume ID to be mounted.

DriveOption One of the following:

PVL_ANY any drive may be used. DriveList is
ignored.

PVL_INCLUDE only drives in drive list may be used.

PVL_EXCLUDE any drives except those in DriveList
may be used.

DriveCount The length of DriveList.

DriveList The list of drives that may be (or may NOT be) used for the
mount.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. An error only means that the volume was not added to the set. The job ID
and any volumes already in the set are not affected.

Error conditions
HPSS_EACCES Volume not allocated to client.

HPSS_EBUSY Cartridge already part of mount.

HPSS_EEXPORT Volume is scheduled to be exported.

Chapter 6: Physical Volume Library Functions

6-20 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_EINVAL Job ID already committed or job is not a mount (it is an import,
export, or move).

HPSS_EMDM Metadata manager failure.

HPSS_ENOENT Invalid job ID or volume ID specified.

HPSS_ENOMEM Not enough memory.

HPSS_ESRCH Client is not registered with job ID.

HPSS_ENOTYET Server administrative set not yet Unlocked.

HPSS_ETOOMANY Not enough drives in PVR to support requested volumes.

See also
pvl_DismountJobId, pvl_MountNew, pvl_MountCommit.

Clients
Storage Server.

Notes
None.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-21
Rev. 0

6.1.15. pvl_MountCommit

Purpose
Mount a set of volumes.

Syntax
#include "pvl_interface.h"

signed32 pvl_MountCommit(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
job_id_t JobId, /* IN */
timestamp_t *CommitTime); /* OUT */

Description
Commits the mount request associated with the job ID. All volumes should have already been
added to the mount list. The time the job was committed in the PVL is returned.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

JobId Job ID.

CommitTime Time committed in PVL.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

A return value of 0 means that the mount request has been queued, the volumes are not actually
available. As each volume mount is completed, the notify function (ss_MountCallback) will be
called to inform the client. The CommitTime is used for job recovery by libpvl.

Error conditions
HPSS_EEMPTY No volumes have been added to the mount.

HPSS_EINVAL Job ID already committed or job is not a mount (it is an import,
export, or move).

HPSS_ENOENT Invalid job ID specified.

HPSS_EOWNER Client is not registered with job ID.

HPSS_ENOTYET Server administrative set not yet Unlocked.

See also
pvl_DismountJobId, pvl_MountNew, pvl_MountAdd.

Clients
Storage Server.

Notes

Chapter 6: Physical Volume Library Functions

6-22 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The client should be aware that the notify function (ss_MountCallback) can be called as soon as
pvl_MountCommit is called, before the pvl_MountCommit function returns (i.e. a race condition
exists).

If the client’s notify function requires any set up before it can be called, the client should perform
the set up when it receives the job ID from the pvl_MountNew function.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-23
Rev. 0

6.1.16. pvl_MountCompleted

Purpose
Notify the PVL that a pending mount has completed.

Syntax
#include "pvl_interface.h"

signed32 pvl_MountCompleted(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
cart_t *Cart, /* IN */
side_t Side, /* IN */
drive_t Drive, /* IN */
job_id_t JobId, /* IN */
pvl_status_t TheStatus); /* IN */

Description
The PVL will verify the job, check the label on the drive, and if all is in order, complete it’s
processing of the mount. This is intended to be used by PVRs which can report the drive a
volume has been mounted on to speed up volume recognition. It is also used by the PVR to
report errors in attempting to mount a cartridge.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Cart Cartridge ID.

Side Side number (normally zero).

Drive The ID of the drive.

JobId Job ID of the mount which completed.

TheStatus 0 for successful completion, non-zero to report errors.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_EINVAL TheStatus is zero, and DriveAddr is not valid, OR the drive is not

controlled by the PVR, OR the volume label does not match the
request.

HPSS_EBUSY The drive is offline, or in use by some other job.

HPSS_ESRCH Cartridge/Activity/Job was not found.

HPSS_ESOCKET Error occurred opening socket to Mover while attempting to read
label.

HPSS_ESCOMM Communication error occurred while attempting to read label.

Chapter 6: Physical Volume Library Functions

6-24 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_ETIMEDOUT Timeout error occurred while attempting to read label.

See also
pvl_MountNew, pvl_MountCommit, pvl_MountAdd, pvl_Mount.

Clients
Physical Volume Repository.

Notes
DriveAddr and JobId are required if TheStatus is zero, indicating a successful mount. If TheStatus
is non-zero, DriveAddress is ignored. If an error other that HPSS_ESRCH is returned to the PVR,
the PVR will attempt to mount the cartridge in another drive in the jobs drive list.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-25
Rev. 0

6.1.17. pvl_MountNew

Purpose
Begin creating a set of volumes to mount, or allow a client to add volumes to an existing set.

Syntax
#include "pvl_interface.h"

signed32 pvl_MountNew(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
signed32 ControllerWait, /* IN */
job_id_t *JobId); /* IN/OUT */

Description
Returns a unique job ID that can be used to identify a set of physical volumes to be mounted in
one atomic operation. Or adds a new client to the notify list for an existing job ID that has not yet
been committed.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

ControllerWait If TRUE the PVL will wait until all the volumes can be mounted
on non-conflicting controller drives. If FALSE the PVL will make
an attempt to use non-conflicting controller drives, but will use
any available drives.

JobId Job ID. If NULL, this is a new mount request and a job ID will be
returned. If not NULL, the function is being called by a client that
is joining an existing job ID.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. On error, jobId is undefined.

Error conditions
HPSS_EINVAL Job ID already committed or job is not a mount (it is an import,

export, or move).

HPSS_ENOENT Nonexistent job ID specified.

HPSS_ENOMEM Not enough memory.

HPSS_ESRCH Client is already registered with JobId.

HPSS_ENOTYET Server administrative state not yet Unlocked.

HPSS_ECONFLICT Client is already a member of job.

See also
pvl_DismountJobId, pvl_MountAdd, pvl_MountCommit, ss_MountCallback.

Clients

Chapter 6: Physical Volume Library Functions

6-26 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Storage Server.

Notes
In future releases, if the mount is not committed in MOUNT_COMMIT_TIMEOUT seconds, then
the mount will automatically be aborted. This feature is not supported in HPSS the current
release.

When multiple clients are involved in an atomic mount, the ControllerWait values are Ored
together. Thus if any client wants to ensure that the job is spread across non-conflicting
controllers, all volumes will be mounted in that manner.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-27
Rev. 0

6.1.18. pvl_Move

Purpose
Move a cartridge from one PVR to another.

Syntax
#include "pvl_interface.h"

signed32 pvl_Move(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *Destination, /* IN */
cart_t *Cart); /* IN */

Description
Moves a cartridge from one PVR to another. The entire move will be automated by the PVRs if
possible. Otherwise the source PVR will use its standard eject mechanism and the destination
PVR will use its standard inject mechanism.

All metadata associated with the cartridge that is under PVR control will be transferred to the new
PVR.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Destination PVR to receive the cartridge.

Cart Cartridge to move.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOTYET Server administrative set not yet Unlocked.

HPSS_EEXIST Destination PVR does not exist.

HPSS_EEXPORT Volume is scheduled to be exported.

HPSS_EMDM Metadata manager failure.

HPSS_ENODEV Media type not supported by destination PVR.

HPSS_EINVAL Fixed media don’t reside in a PVR.

HPSS_EDISABLED All drives of required type in PVR are disabled.

HPSS_ENOENT Cartridge not found.

HPSS_EPERM Generic volume ID invalid for this operation.

HPSS_EALREADY Destination and current PVR are the same.

Chapter 6: Physical Volume Library Functions

6-28 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

See also
pvl_Import, pvl_Export.

Clients
Storage System Manager.

Notes
The move will be done in the order of an inject to destination PVR, then eject from the current
PVR. This order is used to prevent loss of metadata.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-29
Rev. 0

6.1.19. pvl_NotifyCartridge

Purpose
Notify the PVL that a cartridge has been checked in to our out of a PVR.

Syntax
#include "pvl_interface.h"

signed32 pvl_NotifyCartridge(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
signed32 Notification, /* IN */
cart_t *Cart, /* IN */
uuid_t *PvrID); /* IN */

Description
If the cartridge is being checked out of a PVR, and there is an outstanding mount request for any
volume on that cartridge, the PVL will call the pvr_LocateCartridge function in each PVR that
might contain the cartridge, starting with the PVR identified in PvrID (if any), to cause each such
PVR to search for the cartridge. If another PVR reports having the cartridge, the PVL will update
the location metadata to reflect the new location, cancel any outstanding mount to the previous
PVR, and issue a mount to the new PVR. If the cartridge is not located by this method, the mount
will remain pending in the original PVR so that the operator will be notified of the request for the
tape.

If the cartridge is being checked in to a PVR, the PVL will update the metadata associated with all
volumes on that cartridge to reflect the possibly new PVR containing the cartridge. If there is a
pending mount request for any volume on the cartridge, the PVL will cancel the mount request to
any other PVR, and issue the mount request to the new PVR.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Notification One of the following:

PVR_CHECKED_IN.

PVR_CHECKED_OUT.

Cart Specific cartridge ID.

PvrID If the PVR can determine that the cartridge has been moved to
another PVR, this is the ID of the PVR to which it has moved.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. If an error is returned, the value of volume is undefined.

Error conditions
HPSS_ENOTSUPPORTED This API is not currently implemented.

See also
pvr_LocateCartridge.

Chapter 6: Physical Volume Library Functions

6-30 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Clients
Physical Volume Repository.

Notes
This API is not currently called by current release PVRs nor is it implemented in the current PVL.
It may be included in latter releases in conjunction with an audit capability.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-31
Rev. 0

6.1.20. pvl_PVLGetAttrs

Purpose
Get the current values of the attributes of the PVL.

Syntax
#include "pvl_interface.h"

signed32 pvl_PVLGetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
pvl_data_t *PLVData); /* OUT */

Description
Returns the value of all PVL attributes. All attributes have meaningful values except
ScratchVolumes which is always set to 0.

Parameters
Bh RPC binding handle

Ch HPSS connect handle

PVLData Structure containing all attributes of the PVL Managed Object.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. If an error is returned, the value of Attributes is undefined.

Error conditions
None.

See also
pvl_PVLSetAttrs.

Clients
Storage System Manager.

Notes
None.

Chapter 6: Physical Volume Library Functions

6-32 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

6.1.21. pvl_PVLSetAttrs

Purpose
Set the current values of the attributes of the PVL.

Syntax
#include "pvl_interface.h"

signed32 pvl_PVLSetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
u_signed64 InSelectBitmap, /* IN */
pvl_data_t *InPVLData, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
pvl_data_t *OutPVLData); /* OUT */

Description
Sets PVL attributes to the value of the corresponding field of the attributes argument. Only those
attributes identified by the InSelectBitmap field are set.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

InSelectBitmap Bitmap indicates which object attributes are to be set.

InPVLData New values of attributes to be set.

OutSelectBitmap Bitmap indicates which attributes were actually modified.

OutPVLData Complete managed object including the updated fields.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOTSUPPORTED Attempted to set scratch volumes Not implemented in the

current release.

HPSS_EINVAL Attempted to set a read-only attribute.

See also
pvl_PVLGetAttrs.

Clients
Storage System Manager.

Notes
The RegisterBitmap field will not be persistent across PVL restarts.

The following table indicates which fields can be modified through this function:

NO PVLId

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-33
Rev. 0

NO Version

YES RegisterBitmap

YES TotalVolumes

YES TotalRepositories

NO ScratchVolumes

YES TotalDrives

YES VolFileName

YES JobFileName

YES ActFileName

YES DriveFileName

NO PVRIDs

Chapter 6: Physical Volume Library Functions

6-34 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

6.1.22. pvl_QueueGetAttrs

Purpose
Get the current values of the attributes of the PVL request queue.

Syntax
#include "pvl_interface.h"

signed32 pvl_QueueGetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
api_queue_data_t **QueueData); /* OUT */

Description
Returns the value of all PVL request queue attributes. The request queue contains information on
all active mount, import, export, and move requests.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

QueueData Pointer to a list of jobs..

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. If an error is returned, the value of QueueData is undefined.

Error conditions
None.

See also
pvl_QueueSetAttrs.

Clients
Storage System Manager.

Notes
None.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-35
Rev. 0

6.1.23. pvl_QueueSetAttrs

Purpose
Set the current values of the attributes of the PVL request queue.

Syntax
#include "pvl_interface.h"

signed32 pvl_QueueSetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
u_signed64 InSelectBitmap, /* IN */
api_queue_data_t *InQueueData, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
api_queue_data_t **OutQueueData); /* OUT */

Description
Returns the value of all PVL request queue attributes. Sets queue attributes to the value of the
corresponding field of the InQueueData argument. Only those attributes identified by the
InSelectBitmap field are set.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

InSelectBitmap Bitmap indicates which object attributes are to be set.

InQueueData New values of attributes to be set.

OutSelectBitmap Bitmap indicates which attributes were actually modified.

OutQueueData Complete managed object including the updated fields.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_EINVAL Attempted to set a read-only attribute.

See also
pvl_QueueGetAttrs.

Clients
Storage System Manager.

Notes
The RegisterBitmap field will not be persistent across PVL restarts.

It is not possible to change the list of jobs with this function. Jobs are added via pvl_MountAdd,
pvl_Mount, pvl_Import, etc. Jobs are removed after they are completed.

The following table indicates which fields can be modified through this function:

Chapter 6: Physical Volume Library Functions

6-36 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

NO QueueID

NO Version

YES RegisterBitmap

NO TotalRequests

NO Jobs

NO JobID

NO Next

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-37
Rev. 0

6.1.24. pvl_RequestGetAttrs

Purpose
Get the current values of the attributes of a specified entry in the PVL request queue.

Syntax
#include "pvl_interface.h"

signed32 pvl_RequestGetAttrs
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
job_id_t RequestID, /* IN */
request_data_t *RequestData); /* OUT */

Description
Returns the value of a PVL request queue entry’s attributes. An entry in the request queue
contains information about a single active mount, import, export, or move request. The request
queue entry to be queried is determined by the RequestID argument.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

RequestID ID of specific request to query.

RequestData Structure containing all attributes of the Request Managed
Object.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. If an error is returned, the value of Attributes is undefined.

Error conditions
HPSS_EXIST Invalid request ID specified.

See also
pvl_RequestSetAttrs.

Clients
Storage System Manager.

Notes
None.

Chapter 6: Physical Volume Library Functions

6-38 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

6.1.25. pvl_RequestSetAttrs

Purpose
Set the current values of the attributes of an entry on the PVL request queue.

Syntax
#include "pvl_interface.h"

signed32 pvl_RequestSetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
u_signed64 InSelectBitmap, /* IN */
request_data_t *InRequestData, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
request_data_t *OutRequestData); /* OUT */

Description
Sets request attributes to the value of the corresponding field of the InRequestData argument.
Only those attributes identified by the InSelectBitmap field are set.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

InSelectBitmap Bit map that indicates which object attributes are to be set.

InRequestData New values of attributes to be set.

OutSelectBitmap Bitmap indicates which attributes were actually modified.

OutDriveData Complete managed object including the updated fields.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_EINVAL Attempted to set a read-only attribute.

HPSS_EXIST Invalid request ID specified.

See also
pvl_RequestGetAttrs.

Clients
Storage System Manager.

Notes
The RegisterBitmap field will not be persistent across PVL restarts.

The following table indicates which fields can be modified through this function:

NO JobID

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-39
Rev. 0

NO Version

YES RegisterBitmap

NO RequestType

NO RequestTimestamp

NO MountedVolumes

NO RequestStatus

NO Vols

NO Vol

NO DriveRequested

NO Drive

NO State

NO Next

Chapter 6: Physical Volume Library Functions

6-40 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

6.1.26. pvl_ServerGetAttrs

Purpose
Get the current values of the attributes of the PVL server.

Syntax
#include "pvl_interface.h"

signed32 pvl_ServerGetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
hpss_server_attrib_t *ServerData); /* OUT */

Description
Returns the value of all PVL server attributes.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

ServerData Structure containing all attributes of the HPSS Server Managed
Object. Note that the definition of this structure is maintained in
the SSM chapter.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. If an error is returned, the value of Attributes is undefined.

Error conditions
None.

See also
pvl_ServerSetAttrs.

Clients
Storage System Manager.

Notes
None.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-41
Rev. 0

6.1.27. pvl_ServerSetAttrs

Purpose
Set the current values of the attributes of the PVL server.

Syntax
#include "pvl_interface.h"

signed32 pvl_ServerSetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
u_signed64 InSelectBitmap, /* IN */
hpss_server_attrib_t *InServerData, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
hpss_server_attrib_t *OutServerData); /* OUT */

Description
Sets PVL server attributes to the value of the corresponding field of the InServerData argument.
Only those attributes identified by the InSelectBitmap field are set.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

InSelectBitmap Bitmap indicates which object attributes are to be set.

InServerData New values of attributes to be set.

OutSelectBitmap Bit map that indicates which attributes were actually modified.

OutServerData Complete managed object including the updated fields.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOTSUPPORTED Attempted to set the Administrative state to reinitialize. Not

implemented in the current release.

HPSS_EINVAL Attempted to set one or more read-only attributes. The
OutSelectBitmap indicates which attributes were successfully set.

See also
pvl_ServerGetAttrs.

Clients
Storage System Manager.

Notes
The RegisterBitmap field will not be persistent across PVL restarts.

The following table indicates which fields can be changed through this function:

Chapter 6: Physical Volume Library Functions

6-42 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

NO Version

NO ServerID

NO DescName

NO ServerName

NO OperationalState

NO UsageState

YES AdministrativeState

NO ExecutionState

NO ServiceStatus

NO SecurityStatus

NO SoftwareStatus

NO HardwareStatus

NO CommunicationStatus

NO ThreadsAlarmThreshold

NO ConnectionAlarmThreshold

YES RegisterBitmap

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-43
Rev. 0

6.1.28. pvl_VolumeGetAttrs

Purpose
Get the current values of the attributes of a volume.

Syntax
#include "pvl_interface.h"

signed32 pvl_VolumeGetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
vol_t *Vol, /* IN */
vol_data_t *VolData); /* OUT */

Description
Returns the value of all Volume attributes for the volume specified by the Vol argument.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Vol Volume to query.

VolData Structure containing all attributes of the Volume Managed Object.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. If an error is returned, the value of VolData is undefined.

Error conditions
HPSS_EMDM Metadata manager failure.

HPSS_ENOENT Invalid volume ID specified.

See also
pvl_VolumeSetAttrs.

Clients
Storage System Manager.

Notes
None.

Chapter 6: Physical Volume Library Functions

6-44 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

6.1.29. pvl_VolumeSetAttrs

Purpose
Set the current values of the attributes of a volume.

Syntax
#include "pvl_interface.h"

signed32 pvl_VolumeSetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
u_signed64 InSelectBitmap, /* IN */
vol_data_t *InVolData, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
vol_data_t *OutVolData); /* OUT */

Description
Sets drive attributes to the value of the corresponding field of the InVolData argument. Only those
attributes identified by the InSelectBitmap field are set.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

InSelectBitmap Bitmap indicates which object attributes are to be set.

InVolData New values of attributes to be set.

OutSelectBitmap Bit map that indicates which attributes were actually modified.

OutVolData Complete managed object including the updated fields.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_EINVAL Attempted to set a read-only attribute.

HPSS_EMDM Metadata manager failure.

HPSS_EOWNER Volume not currently allocated to client.

HPSS_EEXIST Volume ID specified does not exist.

See also
pvl_VolumeGetAttrs.

Clients
Storage System Manager.

Notes
If the RegisterBitmap field is set, it will be stored in metadata and remain set across PVL restarts.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-45
Rev. 0

If the PhysicalVolumeID field of the InVolData structure contains the ID of the generic volume
object (PVL_GENERIC_VOLUME_ID) then only the RegisterBitmap can be set. This bitmap will
be ORed with the RegisterBitmap attribute of each volume object to determine if a notification is to
be sent to the SSM.

The following table indicates which fields can be modified through this function:

NO PhysicalVolumeID

NO Version

YES RegisterBitmap

NO PVR

NO AllocatedClientID

NO AllocationStatus

YES PhysicalVolumeType

NO PhysicalVolumeLabel

NO VolumeLabelFormat

NO OperationalState

NO UsageState

NO AdministrativeState

YES PhysicalVolumeState

NO CartridgeID

Chapter 6: Physical Volume Library Functions

6-46 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

6.1.30. pvl_WriteVolumeLabel

Purpose
Rewrite the internal label on a specified volume.

Syntax
#include "pvl_interface.h"

signed32 pvl_WriteVolumeLabel (
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
vol_t *Vol); /* IN */

Description
Rewrites the internal label on a volume. With most tape technologies this will logically erase all
information on the volume. It will not physically erase any data on the volume.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Vol Specific volume rewrite label.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. If an error is returned, the value of volume is undefined.

Error conditions
HPSS_ENOTYET Server administrative set not yet Unlocked.

HPSS_EINVAL Attempted to write label on an allocated volume.

HPSS_EDISABLED All drives of required type in PVR are disabled.

HPSS_ENOMOUNT Unable to mount volume.

HPSS_ENOENT Volume not found.

See also
pvl_Import.

Clients
None.

Notes
Not currently called by a HPSS server.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-47
Rev. 0

6.2. Data Definitions

This section describes key internal data definitions and all externally used data definitions which are
provided by this subsystem. A data definition may be represented by constructs such as data structures
and constants. For each data definition, a description, format (including parameter descriptions), and
clients which access the data definition are provided.

Many of the PVL data structures are linked together in a fairly complicated fashion. To make the
relationships more clear, a high level view of some of the data structures is presented below.

Job List An unordered list of jobs that the PVL is currently processing. Jobs include
mount, import, export, and move. A mount request will be kept on the queue
from the time the pvl_MountNew API is issued until the time the PVR has
completed dismounting all of the volumes associated with the mount request (or
equivalent functions for import, export, and move commands).

Every job is given a job ID.

Next Drive List A subset of the Job List is linked in a queue. This is a queue of jobs that are
waiting for drives to be assigned. The job at the head of this queue will have first
shot at the next drive when it becomes available. New jobs are added to the end
of this queue when they have assigned all of their cartridges. Jobs are removed
from this queue after all mounts for the job are satisfied.

Note that this queue implies that a job with an earlier commit time could receive
drives and be mounted before a job with an older commit time if the earlier job is
assigned all of its cartridges first.

Active Cart List A list of cartridges that are currently part of one or more jobs. This list is used to
quickly identify jobs that require the same cartridge. When the cartridge
becomes available, all jobs waiting for the cartridge are checked and the job with
the oldest commit time is assigned the cartridge.

Client Info Information about the client(s) associated with a job queue entry. The information
includes the client ID and the asynchronous callback provided by the client (for
operations which receive asynchronous notification).

Activity Structure Contains the status of a specific physical volume in a specific job.

The Job List, Active Cart List, and Activity Structure form a sort of 2 dimensional array.

6.2.1. PVL Data Structure - pvl_data_t

Description

Managed Object which contains PVL specific parameters. This data is maintained by the metadata
manager.

Format

The PVL Data has the following format:

typedef struct {
uuid_t PVLId;
signed32 Version;
u_signed64 RegisterBitmap;
signed32 TotalVolumes;
signed32 TotalRepositories;

Chapter 6: Physical Volume Library Functions

6-48 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

signed32 ScratchVolumes;
signed32 TotalDrives;
idl_char VolFileName[HPSS_MAX_DCE_NAME];
idl_char JobFileName[HPSS_MAX_DCE_NAME];
idl_char ActFileName[HPSS_MAX_DCE_NAME];
idl_char DriveFileName[HPSS_MAX_DCE_NAME];
uuid_t PVRIDs[MAX_PVRS];

} pvl_data_t;

PVLId

ID of the specific PVL. It is intended that there be only one PVL per HPSS installation.

Version

The number identifying the version of the PVL which understands this record.

RegisterBitmap

Bitmap that shows which job attributes the SSM has registered for change notification.

TotalVolumes

The total number of volumes currently managed by the PVL.

TotalRepositories

The number of PVRs currently controlled by the PVL.

ScratchVolumes

The number of scratch volumes currently managed by the PVL(Unused in the current release).

TotalDrives

The number of drives currently managed by the PVL.

VolFileName

The name of the SFS file containing the volume metadata.

JobFileName

The name of the SFS file containing the Job metadata.

ActFileName

The name of the SFS file containing the Activity metadata.

DriveFileName

The name of the SFS file containing the Drive metadata.

PVRIDs

The IDs of the PVRs controlled by the PVL.

Clients

The following clients access the data definition:

Physical Volume Repository, Storage System Manager, NSL UniTree Migration.

6.2.2. Queue Data Structure - api_queue_data_t

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-49
Rev. 0

Description

The Queue Data is an external representation of the PVL’s internal job list structure. The RegisterBitmap
in the queue is checked each time a job is added to or removed from the queue, so that SSM can be
notified of changes in the queue.

Format
The Queue Data has the following format:
typedef struct {

signed32 QueueID;
signed32 Version;
u_signed64 RegisterBitmap;
signed32 TotalRequests;
job_id_list_t JobList[1];

} api_queue_data_t;

QueueID

There is currently only one Queue. This field is for future use.

Version

The number identifying the version of the PVL which understands this record.

RegisterBitmap

Bitmap that shows which job attributes the SSM has registered for change notification.

TotalRequests

The number of requests in the PVL’s queue.

Jobs

Pointer to the first JobID structure in the queue or NULL if the queue is empty.

typedef struct job_id_list {
signed32 JobID;
signed32 RequestType;
signed32 RequestStatus;
signed32 MountedVolumes;
timestamp_t CommitTime;
timestamp_t RequestTimeStamp;
struct job_id_list *Next;

} job_id_list_t;

JobID

The ID if a job in the queue.

RequestType

The type of job request (mount, import, etc.). Valid values are: PVL_ASYNC_MOUNT,
PVL_IMPORT_DEFAULT, PVL_IMPORT_SCRATCH, PVL_DEFER_DISMOUNTS, PVL_EXPORT,
PVL_MOVE, PVL_RELABEL, and PVL_SYNC_MOUNT.

RequestStatus

The status from the job request (cart wait, drive wait, etc.). Valid values are: PVL_JOB_NULL,
PVL_JOB_UNCOMMITTED, PVL_JOB_CART_WAIT, PVL_JOB_DRIVE_WAIT, PVL_MOUNT_WAIT,
PVL_JOB_MOUNTED, PVL_JOB_DISMOUNT_PENDING, PVL_JOB_ABORTING, PVL_JOB_INJECT,
PVL_JOB_DEFER_DISMOUNTS, PVL_JOB_EJECT, PVL_JOB_IN_USE, and PVL_JOB_COMPLETED.

MountedVolumes

Chapter 6: Physical Volume Library Functions

6-50 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The number of volumes currently mounted.

CommitTime

The time the job was committed.

RequestTimeStamp

The time the job was created.

Next

This field should be null in all entries when passed through any API function calls. The field is used
internally by the PVL, but will cause recursive unmarshalling if passed through an API. This may cause a
stack overflow in the client.

Clients

The following clients access the data definition:

Storage System Manager.

6.2.3. PVL Job Queue Entry - request_data_t

Description

The request structure is an external representation of the internal structure of a job in the PVL’s queue.
Setting the RegisterBitmap in a request sets the RegisterBitmap in the corresponding job.

Format

The Request Data has the following format:

typedef struct {
job_id_t JobID;
signed32 Version;
u_signed64 RegisterBitmap;
signed32 RequestType;
timestamp_t RequestTimestamp;
signed32 MountedVolumes;
signed32 RequestStatus;
volume_list_t *Vols;

} request_data_t;

JobID

The unique JobID assigned by the PVL when the job was created.

Version

The number identifying the version of the PVL which understands this record.

RegisterBitmap

Bitmap that shows which job attributes the SSM has registered for change notification.

RequestType

One of the following:

PVL_MOUNT

PVL_IMPORT_SCRATCH

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-51
Rev. 0

PVL_IMPORT_DEFAULT

PVL_EXPORT

PVL_MOVE

PVL_RELABEL

PVL_ASYNC_MOUNT

PVL_SYNC_MOUNT

PVL_DEFER_DISMOUNTS

RequestTimestamp

The time at which the job was created.

MountedVolumes

The number of volumes in the request.

RequestStatus

The state of the job, one of the following:

PVL_JOB_UNCOMMITTED

PVL_JOB_CART_WAIT

PVL_JOB_DRIVE_WAIT

PVL_JOB_MOUNT_WAIT

PVL_JOB_MOUNTED

PVL_JOB_DISMOUNT_PENDING

PVL_JOB_ABORTING

PVL_JOB_INJECT

PVL_JOB_EJECT

PVL_JOB_IN_USE

PVL_JOB_COMPLETED

PVL_JOB_DEFER_DISMOUNTS

typedef struct volume_list {
vol_t Vol;
drive_t Drive;
unsigned32 State;
signed32 DriveOption;
signed32 DriveCount;
drive_t DriveList[PVL_MAX_DRIVES_PER_PVR];
drive_type_t DriveType
struct volume_list *Next;

Chapter 6: Physical Volume Library Functions

6-52 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

} volume_list_t;

Vol

Volume ID of a volume which is part of the request.

Drive

Drive ID of the drive actually assigned, Zero if no drive assigned.

State

The state of this volume, one of the following:

PVL_ACT_UNCOMMITTED

PVL_ACT_CART_WAIT

PVL_ACT_CART_ASSIGNED

PVL_ACT_READING_LABEL

PVL_ACT_DRIVE_WAIT

PVL_ACT_UNLOAD_PENDING

PVL_ACT_MOUNT_PENDING

PVL_ACT_MOUNT_FAILED

PVL_ACT_MOUNTED

PVL_ACT_DISMOUNT_PENDING

PVL_ACT_INJECT

PVL_ACT_EJECT

PVL_ACT_DISMOUNTED

DriveOption

The selection option for the DriveList, one of the following:

PVL_ANY

PVL_INCLUDE

PVL_EXCLUDE

DriveCount

Count of entries in Drives. Zero to indicate any available drive.

DriveList

List of drive IDs that might be used for this request..

DriveType

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-53
Rev. 0

Defined media types, one of the following:

MT_TAPE_DEFAULT

MT_TAPE_3480

MT_TAPE_3490

MT_TAPE_3490E

MT_TAPE_3590

MT_TAPE_DD2

MT_TAPE_8MM

MT_TAPE_4MM

MT_TAPE_VHS

MT_TAPE_4420

MT_DISK_DEFAULT

MT_DISK_9570

MT_DISK_MAXSTDKA

MT_RWOPTICAL_DEFAULT

MT_WORMOPTICAL_DEFAULT

MT_MEMORY_DEFAULT

MT_MEMORY_ZITEL

MT_TAPE_REDW

MT_TAPE_TMBRLN

Next

Pointer to the next volume in the request, NULL if this is the last volume.

Clients

The following clients access the data definition:

Storage System Manager.

6.2.4. Cartridge ID Structure - cart_t

Description

Unique identifier for a cartridge in an HPSS system. Currently, the cartridge ID is identical to the external
label on the cartridge.

Format

Chapter 6: Physical Volume Library Functions

6-54 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The Cartridge ID has the following format:

typedef struct {
char Cart[CART_LABEL_LENGTH];

} cart_t;

Cart

ID of the cartridge. Should be identical to the external label on the cartridge. CART_LABEL_SIZE is
defined as 6.

CART_LABEL_LENGTH is defined as 8, which is CART_LABEL_SIZE + 1 (for a trailing NULL) + 1 (to
round up to a multiple of 4)

Clients

The following clients access the data definition:

Physical Volume Repository, Storage System Manager, UniTree Migration.

6.2.5. Volume Structure - vol_t

Description

Unique identifier for a volume in an HPSS system.

Format

The Volume ID has the following format:

typedef struct {
char Vol[HPSS_PV_NAME_SIZE];

} vol_t;

Vol

ID of the volume. VOL_LABEL_SIZE is defined as 8. The first six characters of the volume ID is identical
to the cartridge ID. The last two characters of the volume ID are (hex) digits representing the side
number, where “00” is the first (or only) side.

HPSS_PV_NAME_SIZE is defined as 12, which is VOL_LABEL_SIZE + 1 (for a trailing NULL) + 3 (to
round up to a multiple of 4).

Clients

The following clients access the data definition:

Storage Server, Storage System Manager.

6.2.6. Media Type Structure - media_type_t

Description

Identifies the media type of a cartridge or drive. For each media class, a bitmap describes all possible
configurations (for example, cartridge size and compression mode). When a media type is applied to a
drive, the bitmap shows all possible media types supported by the drive. When media type is applied to a
cartridge, the bitmap shows the type of the cartridge. If a drive and a cartridge have the same media
class, then a simple bitwise operation can be used to determine if the drive supports the cartridge. The
operation looks like:

if ((drive.media.bitmap & cart.media.bitmap)==cart.media.bitmap)
/* Drive supports cartridge */

else

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-55
Rev. 0

/* Drive does not support cartridge */

Format

The Media Type has the following format:

typedef struct {
media_class_t Type;
unsigned32 Subtype;

} media_type_t;

Type

A defined media type. One of:

MT_CLASS_TAPE
MT_CLASS_DISK
MT_CLASS_RWOPTICAL
MT_CLASS_WORMOPTICAL
MT_CLASS_MEMORY

Subtype

Different for each media type.

For Media Type MT_TAPE_DD2:
MT_SUB_25GB
MT_SUB_75GB
MT_SUB_165GB

For Media Type MT_TAPE_8MM:
MT_SUB_2_3GB
MT_SUB_5GB

Clients

The following clients access the data definition:

Storage Server, Storage System Manager.

6.2.7. Active Volume State Structure - activity_data_t

Description

Holds the current state of an active volume for a particular job. This is part of the larger Activity Structure.
This part contains no pointers, is stored in metadata, and contains enough information to rebuild the
pointers during PVL restart.

Format

The Activity Data Structure has the following format:

typedef struct {
job_id_t JobID;
vol_t Vol;
drive_type_t DriveType;
signed32 DriveOption;
signed32 DriveCount;
drive_t Drives[PVL_MAX_DRIVES_PER_PVL];
drive_t Drive;
unsigned32 ActState;
client_t Client;

} activity_data_t;

Chapter 6: Physical Volume Library Functions

6-56 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

JobID

Job ID.

Vol

Volume ID.

DriveType

Type of drive needed, from PysicalVolumeType of the Volume.

DriveOption

One of the following:

PVL_ANY

PVL_INCLUDE

PVL_EXCLUDE

DriveCount

The number of entries in the Drives array.

Drives

Specific drive ids to be included or excluded, depending on DriveOption.

DriveAssigned

ID of drive assigned to volume.

ActState

State of activity. One of:

PVL_ACT_UNCOMMITTED The job which manages the volume has not yet been
committed.

PVL_ACT_CART_WAIT The cartridge containing the volume is not
available (i.e. it is in use by another job).

PVL_ACT_CART_ASSIGNED The cartridge has been reserved. This is a
transitory state between the states
PVL_ACT_CART_WAIT and
PVL_ACT_DRIVE_WAIT.

PVL_ACT_DRIVE_WAIT The cartridge containing the volume has been
reserved, but no drives with the requested
characteristics are available.

PVL_ACT_MOUNT_PENDING The volume is in the process of being mounted in the
drive.

PVL_ACT_MOUNT_FAILED The volume was not mounted successfully. This is a
transitory state.

PVL_ACT_MOUNTED The volume is in the drive and available for
read/write operations.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-57
Rev. 0

PVL_ACT_DISMOUNT_PENDING The volume is in the process of being
dismounted from the drive.

PVL_ACT_INJECT The volume is in the process of being injected.

PVL_ACT_EJECT The volume is in the process of being ejected..

PVL_ACT_READING_LABEL The volume label is in the process of being read after
the PVR has notified the PVL that the cartridge has
been mounted.

PVL_ACT_UNLOAD_PENDING The volume is in the process of being elevated from the
drive and dismounting.

PVL_ACT_DISMOUNTED The volume is dismounted.

Client

ID of the Client process which requested this volume.

Clients

The following clients access the data definition:

Storage Server, Storage System Manager.

6.2.8. Activity Structure - activity_t

Description

This is the PVL’s full internal Activity structure. It contains the smaller activity data that can be stored in
metadata, plus pointers to related activity, job, and active cart list structures.

Format

The Activity Structure has the following format:

typedef struct activity_s {
activity_data_t Act;
struct activity_s *PrevJob;
struct activity_s *NextJob;
struct activity_s *PrevCart;
struct activity_s *NextCart;
struct job_ent_s *ParentJob;
struct cart_ent_s *ParentCart;
client_info_t *Client;
drive_index_t DriveIx;
bool_t DriveAllocated;
bool_t ThreadActive;
drive_type_ent_t *DriveTypeEnt;
time_t DelayTime;
signed32 LabelFormat;

} activity_t;

Act

The smaller Activity Data structure (see activity_data_t).

PrevJob, NextJob

Pointers to activity structures in other jobs requesting the same cartridge.

PrevCart, NextCart

Chapter 6: Physical Volume Library Functions

6-58 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Pointers to other activity structures in the same job.

ParentJob

Pointer to the job containing this activity.

ParentCart

Pointer to the active cart list entry for this cartridge.

Client

ID of the client which requested this volume.

DriveIx

PVL’s internal index for the drive which has this volume mounted, if any.

DriveAllocated

Boolean indicating whether the drive has been allocated from the PVL's drive count.

ThreadActive

Boolean indicating whether there is a thread currently managing this activity.

DriveTypeEnt

Pointer to the drive type information.

DelayTime

Time this activity was placed in deferred dismount state.

LabelFormat

Label format. One of the following:

PVL_LABEL_NONE

PVL_LABEL_FOREIGN

PVL_LABEL_HPSS

PVL_LABEL_DATA

PVL_LABEL_NON_ANSI

Clients

The following clients access the data definition:

None.

6.2.9. Client Information Structure - client_info_t

Description

Information to associate a client and the client's asynchronous notification with a particular job.

Format

The Client Info Structure has the following format:

typedef struct client_info_s {

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-59
Rev. 0

client_t *Client;
struct client_info_s *Next;

} client_info_t;

Client

Pointer to the Client Cache entry structure.

Next

Next client associated with the particular job.

Clients

The following clients access the data definition:

None.

6.2.10. Job Data Structure - job_data_t

Description

Information about a single job (Mount, Import, Export, or Move) currently being managed by the PVL. .
This is part of the larger Job Structure. This part contains no pointers, is stored in metadata, and contains
enough information to rebuild the job list and drive queue pointers during PVL restart.

Format

The Job Data Entry has the following format:

typedef struct {
job_id_t JobID;
u_signed64 RegisterBitmap;
timestamp_t Created;
timestamp_t CommitTime;
unsigned32 Priority;
unsigned32 JobState;
unsigned32 JobType;
unsigned32 ActCount;
unsigned32 InDriveQueue;
job_id_t DriveQNext;
signed32 ControllerWait;

} job_data_t;

JobID

Job ID. Generated by the PVL and used by the client and SSM to reference the job.

RegisterBitmap

Bitmap that shows which job attributes the SSM has registered for change notification.

Created

Time when job was first created.

CommitTime

Time when job was committed if the job is a mount.

Priority

Reserved for future use in scheduling jobs.

JobState

Chapter 6: Physical Volume Library Functions

6-60 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Current state of the job. One of:

PVL_JOB_UNCOMMITTED The job has not yet been committed.

PVL_JOB_CART_WAIT One or more cartridges need by the job are not
available (i.e. in use by another job).

PVL_JOB_DRIVE_WAIT The cartridges containing the volumes have been
reserved, but one or more drives with the requested
characteristics are not available.

PVL_JOB_MOUNT_WAIT The cartridges containing the volumes have been
reserved, and the drives are available, but one or more
requested volumes are in the process of being mounted.

PVL_JOB_MOUNTED All cartridges are in their drives and the job is available
for read/write operations. Any client with notifications
registered for the job would be notified when the job
state becomes MOUNTED.

PVL_JOB_DISMOUNT_PENDING A dismount has been requested for the job. The
cartridges are being dismounted. The cartridges and
drives are being assigned to other jobs. Once all of the
dismounts have completed, the job is removed from the
job list.

PVL_JOB_ABORTING One or more volumes encountered mount errors. Any
cartridges which were successfully mounted will be
dismounted. Once all of the dismounts have
completed, the job is removed from the job list.

PVL_JOB_INJECT The Import job is requesting the PVR to Inject the
cartridge.

PVL_JOB_EJECT The Export job is requesting the PVR to eject the
cartridge.

PVL_JOB_INUSE All volumes in job have been mounted.

PVL_JOB_DEFER_DISMOUNTS This job will contain all volumes in deferred dismount
state.

JobType

Type of job. One of PVL_MOUNT, PVL_IMPORT_DEFAULT, PVL_IMPORT_SCRATCH,
PVL_DEFER_DISMOUNTS, PVL_EXPORT, PVL_MOVE, PVL_RELABEL.

ActCount

The number of activity structures attached to this job (the number of volumes to be used).

InDriveQueue

Boolean indicating whether this job is in the Drive Queue.

DriveQNext

JobID of the next job in the drive queue.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-61
Rev. 0

ControllerWait

Boolean value, set to true if volumes to be mounted in the job should be placed on drives with separate
controllers(not implemented in the current release).

Clients

The following clients access the data definition:

None.

6.2.11. Job Entry Structure - job_ent_t

Description

Information about a single job (Mount, Import, Export, or Move) currently being managed by the PVL. .
This is the larger Job Structure, containing the job data which is stored in metadata plus pointers.

Format

The Job List Entry has the following format:

typedef struct job_ent_s {
job_data_t Job;
bool_t ThreadWaiting;
hpsssem_t JobSem;
client_info_t *ClientInfo;
struct activity_s *Activity;
struct job_ent_s *Prev;
struct job_ent_s *Next;
struct job_ent_s *PrevD;
struct job_ent_s *NextD;
signed DismountReason;
bool_t AtomicJob;
int MountedVolumes;

} job_ent_t;

Job

The smaller job data structure which is stored in metadata. (see job_data_t).

ThreadWaiting

Boolean indicating whether there is a thread actively managing this job.

JobSem

A semaphore used when the thread managing the job is waiting on external events.

ClientInfo

Pointer to the list of Client(s) which are part of this job.

Activity

Pointer to the list of Activities which are part of this job.

Prev, Next

Pointers to other jobs in the (unordered) job list, if any.

PrevD, NextD

Pointers to other jobs in the (ordered) DriveQueue, if any.

DismountReason

Chapter 6: Physical Volume Library Functions

6-62 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The index of the log message indicating the reason the job is being dismounted, if any.

AtomicJob

Boolean indicating whether this job requires atomic mount.

MountedVolumes

The number of volumes currently mounted.

Clients

The following clients access the data definition:

None.

6.2.12. Cartridge List Entry Structure - cart_ent_t

Description

Information about any cartridge which is currently in use or requested by one or more PVL jobs. This is an
internal data structure not visible outside the PVL.

Format

The Cartridge List Entry has the following format:

typedef struct cart_ent_s {
cart_t Cart;
pvr_index_t PvrIx;
struct cart_ent_s *Prev;
struct cart_ent_s *Next;
activity_t *Activity;

} cart_ent_t;

Cart

Cartridge ID.

PvrIx

PVL’s internal index into a data structure representing all the PVRs.

Activity

Pointer to the list of activity structures with volumes that are contained in this cartridge.

Prev, Next

Pointers to the previous and next active cartridge list entries, respectively.

Clients

The following clients access the data definition:

None.

6.2.13. Volume Data Structure - vol_data_t

Description

Information about a specific volume in HPSS. This information is stored in Metadata and is not cached in
memory.

Format

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-63
Rev. 0

The Volume Data Structure has the following format:

typedef struct {
vol_t PhysicalVolumeID;
signed32 Version;
u_signed64 RegisterBitmap;
uuid_t PVR;
client_t AllocatedClientID;
signed32 AllocationStatus;
media_type_t PhysicalVolumeType;
signed32 VolumeLabelFormat;
signed32 OperationalState;
signed32 UsageState;
signed32 AdministrativeState;
cart_t CartridgeID;

} vol_data_t;

PhysicalVolumeID

Volume ID.

Version

The number identifying the version of the PVL which understands this record.

RegisterBitmap

Bitmap that shows which volume attributes the SSM has registered for change notification.

PVR

The UUID of the PVR containing the volume.

AllocatedClientID

The UUID of the client which has allocated the volume, if any.

AllocationStatus

Either PVL_ALLOCATED or PVL_UNALLOCATED.

PhysicalVolumeType

The media type of the volume.

VolumeLabelFormat

<unused>.

OperationalState

Reserved for future use.

UsageState

Reserved for future use.

AdministrativeState

Reserved for future use.

CartridgeID

The ID of the cartridge containing the Volume. This is the first six characters of the VolumeID.

Clients

Chapter 6: Physical Volume Library Functions

6-64 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The following clients access the data definition:

Storage System Manager, NSL UniTree Migration.

6.2.14. Drive Data Structure - drive_data_t

Description

Information about a specific drive in HPSS. This information is stored in Metadata and is also cached in
memory.

Format

The Drive Data Structure has the following format:

typedef struct {
drive_t DriveID;
unsigned32 Version;
u_signed64 RegisterBitmap;
uuid_t PVR;
drive_addr_t DriveAddress;
media_type_t DriveType;
unsigned32 Controller;
signed32 PollingInterval;
timestamp_t MaintenanceDate;
vol_t MountedVolume;
unsigned32 MountsSinceLastMaint;
unsigned32 OperationalState;
unsigned32 UsageState;
unsigned32 AdministrativeState;
unsigned32 DriveState;
uuid_t MvrID;

} drive_data_t;

DriveID

Drive ID shared by PVL, PVR, and Mover. Each drive must have a unique ID.

Version

The number identifying the version of the PVL which understands this record.

RegisterBitmap

Bitmap which defines the fields that SSM has registered for change notification. This bitmap will be stored
in metadata, so notifications will be persistent across PVL restarts.

PVR

The UUID of the PVR containing the volume.

PVR which holds the drive. Every drive in an HPSS system is managed by exactly one PVR.

ControllerID

ID of the hardware controller that is used to access the drive. This is used to attempt to mount a set of
volumes to drives on different controllers.

DriveAddress

Character string to identify the drive, used by PVR and Robot.

DriveType

Type of drive. Used to determine the media types that are supported by the drive.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-65
Rev. 0

MaintenanceDate

Time the drive was last maintained.

MountedVolume

Volume currently mounted in drive.

MountsSinceLastMaint

Number of mounts since the drive was last maintained.

OperationalState

Either ST_ENABLED, ST_DISABLED or ST_SUSPECT.

Note: special case, if OperationalState is ZERO, it is reset to ST_ENABLED.

UsageState

Either ST_IDLE or ST_BUSY.

AdministrativeState

Reserved for future use.

DriveState

Current state of the drive. One of:

PVL_DRIVE_FREE The drive is currently not being used.

PVL_DRIVE_IN_USE The drive is currently being used.

PVL_DRIVE_DISMOUNT_PENDING The volume on the drive is being removed and a
dismount is in progress.

MvrID

UUID of the Mover that accesses the drive.

Clients

The following clients access the data definition:

Storage Server, Storage System Manager.

6.2.15. Drive Index - drive_index_t

Description

This structure is an index into the drive table maintained by the server.

Format
typedef unsigned32 drive_index_t;

Clients

The following clients access the data definition:

None.

6.2.16. Drive ID - drive_t

Chapter 6: Physical Volume Library Functions

6-66 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Description

This structure denotes the ID of a drive as specified in the PVL/Mover Device/Drive List metadata.

Format
typedef signed32 drive_t;

Clients

The following clients access the data definition:

Physical Volume Repository, Storage System Manager.

6.2.17. Drive Type - drive_type_t

Description

This structure specifies the media type of a drive.

Format
typedef media_type_t drive_type_t;

Clients

The following clients access the data definition:

None.

6.2.18. Drive Type Entry - drive_type_ent_t

Description

This structure is used by the PVL to track the current state and availablility of managed drive types.

Format
typedef struct drive_type_ent_s {

drive_type_t DriveType;
signed32 NumDrives;
signed32 AvailDrives;
signed32 DeferDrives;
drive_index_t DriveIx;
struct drive_type_ent_s *Next;

} drive_type_ent_t;

DriveType

The type of drive to track information on.

NumDrives

The number of drives of this type managed by the PVL which are in working order.

AvailDrives

The number of drives idle of this type.

DeferDrives

The number of mounted (in deferred dismount state) available drives.

DriveIx

The index of the first drive of this type.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-67
Rev. 0

Next

Pointer to the next drive type in the PVL.

Clients

The following clients access the data definition:

None.

6.2.19. Job ID - job_id_t

Description

This structure specifies the job id of the request.

Format
typedef signed32 job_id_t;

Clients

The following clients access the data definition:

Storage Server, Physical Volume Repository, Storage System Manager.

6.2.20. PVR Index - pvr_index_t

Description

This structure specifies an index into a table of PVRs.

Format
typedef unsigned32 pvr_index_t;

Clients

The following clients access the data definition:

None.

6.2.21. Queue Data - queue_data_t

Description

This structure is used internally by the PVL and is identical with the api_queue_data_t structure with the
exception of the last field in the structure Jobs. In api_queue_data_t the JobList is implemented as a
conformant array, in this structure it is implemented as a list via pointer. The two structures contain
identical information.

Format
typedef struct {

signed32 QueueID;
signed32 Version;
u_signed64 RegisterBitmap;
signed32 TotalRequests;
job_id_list_t *Jobs;

} queue_data_t;

QueueID

There is currently only one Queue. This field is for future use.

Chapter 6: Physical Volume Library Functions

6-68 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Version

The number identifying the version of the PVL which understands this record.

RegisterBitmap

Bitmap that show which job attributes the SSM has registered for change notification.

TotalRequests

The number of requests in the PVL’s queue.

Jobs

Pointer to a job structure in the queue or NULL if the queue is empty.

Clients

The following clients access the data definition:

None.

Chapter 6: Physical Volume Library Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 6-69
Rev. 0

6.3. Other Interfaces

6.3.1. ss_MountCallback

Purpose
Allows PVL to notify clients when mounts have completed.

Syntax
signed32 ss_MountCallback(

handle_t Bh, /* IN */
job_id_t JobId, /* IN */
vol_t Volume, /* IN */
drive_data_t DriveData, /* IN */
signed32 MountError); /* IN */

Description
This function should be provided by any client that calls pvl_MountNew. The function will be
called by the PVL as each volume is mounted. The function may be called as soon as the
pvl_MountCommit function is called (possibly before the pvl_MountCommit function returns).
The function will be called as an RPC by the PVL.

Parameters
Bh RPC binding handle.

JobId Job ID (returned by pvl_MountNew) of the job owning the
mounted volume.

Volume ID of the volume which was mounted.

DriveData Information about the drive to which the volume was mounted.

MountError Indicates the status of the mount. Upon successful completion,
the function will return a zero (0). If an error occurs, the negated
error code is returned. On error DriveData is undefined.

Error conditions
HPSS_ENOMOUNT Mount failed.

HPSS_ENOENT Couldn’t find request for volume.

HPSS_EEXIST Already notified about this mount.

Return values
The return value is ignored.

Error conditions
None.

See also
pvl_MountNew, pvl_MountAdd, pvl_MountCommit.

Chapter 6: Physical Volume Library Functions

6-70 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Clients
Storage Server will provide the RPC interface for this function, the Physical Volume Library is a
client. The function is included in libpvl.c, which provides a simplified API to the Storage Server.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-1
Rev. 0

7. Physical Volume Repository Functions

This chapter specifies the Physical Volume Repository programming interface. Specifically, the following
information is provided:

Application Programming Interfaces (APIs)

Data Definitions

7.1. API Functions

This section describes all APIs which are provided for use by another HPSS subsystem or by a client
external to HPSS. The API interface specification includes the following information:

Name

Syntax

Description

Parameters

Return Values

Error Conditions

Related Information

Clients

Notes

Chapter 7: Physical Volume Repository Functions

7-2 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

7.1.1. pvr_Audit

Purpose
Audit all or part of a repository checking external labels on cartridges when possible. Not
implemented in the current release.

Syntax
#include "pvr_interface.h"

signed32 pvr_Audit(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
location_t *Location); /* IN */

Description
An area in the repository is audited to compare the locations of the actual cartridges with their
locations as stored in metadata. Every location in a repository is identified by four labels -- unit,
panel, row, column. This function should be used to reset the internal state of a repository after
any cartridges have been manually moved.

The function returns immediately and continues to run asynchronously. Appropriate status
messages will be sent to Storage System Manager indicating progress of the audit.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Location Location(s) to audit. If any of the location components (unit,
panel, row, column) are set to -1, all of those locations will be
audited. For example, to audit all of unit 5, panel 3, the values of
location should be {5, 3, -1, -1}. This argument may be ignored
by the repository. All location arguments after the first -1 are
assumed to be -1. Therefore all of unit 5, panel 3 will be audited
if the location is {5, 3, -1, 2}.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. The audit itself continues to run asynchronously after the function returns.

Error conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EAUTH The client is not authorized for this API.

HPSS_EMDM Metadata manager failure.

HPSS_EBUSY Another audit is already in progress.

HPSS_ENOTSUPPORTED Not implemented.

See also
pvr_QueryCartridge, pvr_SetCartridge.

Clients

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-3
Rev. 0

Storage System Manager.

Notes
This API is not implemented in the current release. The PVL is notified via the
pvl_NotifyCartridge API about each cartridge that is found. This helps keep the PVL and PVR
metadata in synchronization.

Chapter 7: Physical Volume Repository Functions

7-4 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

7.1.2. pvr_CartridgeGetAttrs

Purpose
Get the current values of the attributes of a cartridge.

Syntax
#include "pvr_interface.h"

signed32 pvr_CartridgeGetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
cart_t *Cartridge, /* IN */
cart_data_t *Attributes); /* OUT */

Description
Returns the value of all Cartridge attributes for the cartridge specified by the Cartridge argument.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Cartridge ID of cartridge managed object to retrieve.

Attributes Structure containing all attributes of the Cartridge Managed
Object. Note that the definition of this structure is maintained in
the SSM chapter.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. If an error is returned, the value of Attributes is undefined.

Error conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EAUTH The client is not authorized for this API.

HPSS_EMDM Metadata manager failure.

HPSS_ENOENT Cartridge not found.

HPSS_EINVAL Invalid input argument.

See also
pvr_CartridgeSetAttrs.

Clients
Storage System Manager.

Notes
None.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-5
Rev. 0

7.1.3. pvr_CartridgeSetAttrs

Purpose
Set the current values of the attributes of a cartridge.

Syntax
#include "pvr_interface.h"

signed32 pvr_CartridgeSetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
cart_t *Cartridge, /* IN */
u_signed64 InSelectBitmap, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
cart_data_t *InAttributes, /* IN */
cart_data_t *OutAttributes); /* OUT */

Description
Sets cartridge attributes for the cartridge specified by the Cartridge argument to the value of the
corresponding attributes of the InAttributes argument. Only those attributes identified by the
InSelectBitmap field are set.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Cartridge ID of managed object to set.

InSelectBitmap Indicates which object attributes are to be set.

OutSelectBitmap Indicates which object attributes were actually set.

InAttributes New values of attributes to be set.

The RegisterBitmap field may be set to any value. Note that this
is the only field which may be set when updating the Generic
Cartridge Object.

The MaintenanceDate field may be set to any value.

The MountsSinceMaint field may be set to any value.

OutAttributes Entire managed object, including newly updated fields.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EAUTH The client is not authorized for this API.

HPSS_EINVAL Attempted to set a read-only attribute.

Chapter 7: Physical Volume Repository Functions

7-6 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_EMDM Metadata manager failure.

HPSS_ENOENT Cartridge not found.

See also
pvr_CartridgeGetAttrs.

Clients
Storage System Manager.

Notes
If the RegisterBitmap field is set, it will be stored in metadata and remain set across PVR restarts.

If the CartridgeID field of the attributes structure contains the ID of the generic cartridge object,
then only the RegisterBitmap can be set. This bitmap will be ORed with the RegisterBitmap
attribute of each cartridge object to determine if a notification is to be sent to the SSM.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-7
Rev. 0

7.1.4. pvr_CheckIn

Purpose
Notify operator to check in a previously checked out cartridge.

Syntax
#include "pvr_interface.h"

signed32 pvr_CheckIn(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
cart_data_t *CartData, /* IN*/

 location_t *Location); /* IN */
Description

The PVR uses its check in mechanism to accept a previously checked out cartridge. The external
label on the cartridge is verified if possible.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

CartData Metadata describing the cartridge.

Location Location where new cartridge was inserted; may be NULL if the
standard inject port on the repository was used.

Return Values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error Conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EINVAL The cartridge was not specified.

HPSS_ENOENT Cartridge not found.

HPSS_EMDM Metadata manager failure.

See Also
pvr_CheckOut.

Clients
PVL.

Notes
None.

Chapter 7: Physical Volume Repository Functions

7-8 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

7.1.5. pvr_CheckOut

Purpose
Check out a cartridge from a PVR.

Syntax
#include "pvr_interface.h"

signed32 pvr_CheckOut(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
cart_t *Cart, /* IN */
location_t *Location, /* IN */
cart_data_t *CartData); /* OUT */

Description
The PVR ejects the cartridge to the operator. All metadata associated with the cartridge is
returned to the client.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Cart Cartridge to check out.

Location Location to place the cartridge when checking out or location
currently holding cartridge, may be NULL if the standard eject
port on the repository is used.

CartData Pointer to client provided space to return information about the
checked out cartridge.

Return Values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. If an error code is returned, the contents of CartData are undefined.

Error Conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EAUTH The client is not authorized for this API.

HPSS_EINVAL The cartridge was not specified.

HPSS_EBUSY Cartridge is currently mounted.

HPSS_EMDM Metadata manager failure.

HPSS_ENOENT Cartridge not found.

See Also
pvr_CheckIn.

Clients
PVL.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-9
Rev. 0

Notes
None.

Chapter 7: Physical Volume Repository Functions

7-10 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

7.1.6. pvr_DismountCart

Purpose
Dismount a single cartridge.

Syntax
#include "pvr_interface.h"

signed32 pvr_DismountCart(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
cart_t *Cart); /* IN */

Description
Dismounts the cartridge if it is currently in a drive and returns it to a storage location.

This function runs synchronously. That is, it doesn’t return to the caller until the cartridge is
dismounted. For some repositories, the dismount is only performed logically, the cartridge might
be left in the drive until the drive is needed by another cartridge.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Cart Cartridge to be dismounted.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EAUTH The client is not authorized for this API.

HPSS_EINVAL Cartridge was not specified.

HPSS_EMDM Metadata manager failure.

HPSS_ENOENT Cartridge not found.

See also
pvr_Mount.

Clients
Physical Volume Library.

Notes
None.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-11
Rev. 0

7.1.7. pvr_DismountDrive

Purpose
Dismounts the cartridge in a given drive.

Syntax
#include "pvr_interface.h"

signed32 pvr_DismountDrive(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
drive_t Drive); /* IN */

Description
Dismounts the given drive and returns any mounted cartridge to its storage location.

This function should be used only by the Storage System Manager to force a dismount when
pvr_DismountCart fails. This function will attempt to dismount a drive even if it believes that no
cartridge is currently in the drive.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Drive Drive to dismount.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EAUTH The client is not authorized for this API.

HPSS_EINVAL The drive was not specified.

HPSS_ENODEV The drive does not exist.

HPSS_ENOENT The drive could not be dismounted.

HPSS_ENOTSUP Operation not supported by current version of the PVR.

See also
pvr_Mount, pvr_DismountCart.

Clients
Physical Volume Library.

Notes
None.

Chapter 7: Physical Volume Repository Functions

7-12 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

7.1.8. pvr_Eject

Purpose
Ejects a cartridge from a PVR.

Syntax
#include "pvr_interface.h"

signed32 pvr_Eject(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
cart_t *Cart, /* IN */
location_t *Location, /* IN */
cart_data_t *CartData); /* OUT */

Description
The PVR ejects the cartridge to the operator. All metadata associated with the cartridge is
returned to the client.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Cart Cartridge to eject.

Location Location to place the cartridge when ejecting or Location
currently holding cartridge, may be NULL if the standard eject
port on the repository is used.

CartData Pointer to client provided space to return information about the
ejected cartridge.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. If an error code is returned, the contents of CartData are undefined.

Error conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EAUTH The client is not authorized for this API.

HPSS_EINVAL The cartridge was not specified.

HPSS_EBUSY Cartridge is currently mounted.

HPSS_EMDM Metadata manager failure.

HPSS_ENOENT Cartridge not found.

See also
pvr_Inject.

Clients
Physical Volume Library.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-13
Rev. 0

Notes
None.

Chapter 7: Physical Volume Repository Functions

7-14 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

7.1.9. pvr_Inject

Purpose
Accept a new cartridge in the PVR.

Syntax
#include "pvr_interface.h"

signed32 pvr_Inject(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
cart_data_t *CartData, /* IN */
location_t *Location); /* IN */

Description
The PVR uses its inject mechanism to accept a new cartridge. The external label on the
cartridge is verified if possible.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

CartData Metadata describing new cartridge, may be NULL and will be
ignored if the cartridge already exists in metadata.

Location Location where new cartridge was inserted, may be NULL if the
standard inject port on the repository was used.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EAUTH The client is not authorized for this API.

HPSS_EEXIST A cartridge with the same ID is already in the repository.

HPSS_EINVAL Number of sides not between 1 and 256 inclusive.

HPSS_EMDM Metadata manager failure.

HPSS_ENOSPACE The repository is full.

See also
pvl_Eject.

Clients
Physical Volume Library.

Notes
None.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-15
Rev. 0

7.1.10. pvr_ListAllCart

Purpose
List all cartridges managed by the PVR.

Syntax
#include "pvr_interface.h"

signed32 pvr_ListAllCart(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
signed32 Continue, /* IN */
cart_data_t *Buffer, /* OUT */
unsigned32 BufferEntries, /* IN */
unsigned32 *NumEntries); /* OUT */

Description
Lists all cartridges managed by the PVR. If Buffer is not large enough to hold all of the cartridges,
the function should be called again with Continue set to true. This should be done until the value
returned in NumEntries is less than the number of cartridges in Buffer.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Continue If FALSE, perform a new selection. Otherwise, if TRUE, continue
previous call to this function.

Buffer Pointer to client allocated array of cartridge data structures.
Cartridge data will be returned in this array.

BufferEntries Number of entries in buffer.

NumEntries The number of cartridge data structures placed in Buffer.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EAUTH The client is not authorized for this API.

HPSS_EINVAL Invalid argument.

HPSS_EMDM Metadata manager failure.

HPSS_EAGAIN Successful read, there is still cartridge information left unread.
Call the function again with Continue set.

See also
pvr_QueryCartridge.

Chapter 7: Physical Volume Repository Functions

7-16 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Clients
Storage System Manager.

Notes
This function is reentrant, but it should not be called simultaneously by two or more non-
cooperating clients. The value of the Continue argument refers to the last function call made, not
the last call made by the specific client.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-17
Rev. 0

7.1.11. pvr_ListPendingMounts

Purpose
List all currently pending mounts for the PVR.

Syntax
#include "pvr_interface.h"

signed32 pvr_ListPendingMounts(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
pending_mount_t *Buffer, /* OUT */
unsigned32 BufferEntries, /* IN */
unsigned32 *NumEntries); /* OUT */

Description
Lists all currently pending mounts for the PVR. Since robotics mounts complete quickly, this list
should be small or empty for robotics repositories. The list may be longer for operator mounted
drives. In any case, the list should never be longer than the number of drives in the PVR because
the PVR only accepts a mount request for a drive that is currently empty.

If Buffer is not large enough to hold all of the cartridges, the function should be called again with a
larger Buffer. There is no Continue flag like in pvr_ListAllCart.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Buffer Client allocated array of entries to place mount information when
returning.

BufferEntries Number of entries in Buffer array. Note: This is the number of
entries in the array, not the size of the array in bytes.

NumEntries Number of entries returned in the array.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EAUTH The client is not authorized for this API.

HPSS_EINVAL Invalid argument.

HPSS_ECONN Not initialized.

HPSS_EAGAIN Buffer too small. Check NumEntries and try again with a buffer
large enough to hold all entries.

See also
pvr_CartridgeGetAttrs.

Chapter 7: Physical Volume Repository Functions

7-18 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Clients
Storage System Manager.

Notes
None.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-19
Rev. 0

7.1.12. pvr_Mount

Purpose
Asynchronously mount a single cartridge.

Syntax
#include "pvr_interface.h"

signed32 pvr_Mount(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
cart_t *Cart, /* IN */
side_t Side, /* IN */
signed32 DriveOption, /* IN */
signed32 DriveCount, /* IN */
drive_t *DriveList[], /* IN */
job_id_t JobId); /* IN */

Description
Mounts the given cartridge/side in a drive. Depending on the drive selection option input. The
drive may be specified in the input drive list or any drive available to the PVR.

This function returns immediately and continues to attempt to mount the cartridge asynchronously.
When the mount completes or fails, the function calls pvl_MountComplete to notify the PVL. It is
also expected that the PVL will periodically poll the drives so that the PVL can determine when the
cartridge is mounted. The PVR will not always know when the cartridge is mounted and therefore
will not be able to call pvl_MountComplete. The PVL should call pvr_MountComplete when it
determines that a cartridge has been mounted.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Cart Cartridge to be mounted.

Side Side of cartridge to be mounted.

DriveOption Select drive from drive list or any drive in PVR.

DriveCount Length of DriveList.

DriveList List of possible drives for mount. The PVR may pick any drive
from this list.

JobId Unique ID generated by PVL which is associated with a set of
mounts.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

A successful return code indicates that the mount is in progress. The client can poll the device to
determine when the cartridge is available, or wait for the PVR to call pvl_MountComplete.

Chapter 7: Physical Volume Repository Functions

7-20 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Error conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EAUTH The client is not authorized for this API.

HPSS_EAGAIN The mount interface (e.g. robot) is not available.

HPSS_EBUSY Cartridge is already mounted.

HPSS_EINVAL Nonexistent cartridge side specified.

HPSS_EMDM Metadata manager failure.

HPSS_ENODEV No drive available for mount.

HPSS_ENOENT Cartridge not found.

HPSS_EOUT The cartridge is checked out of the PVR.

See also
pvr_MountComplete, pvr_DismountCart.

Clients.
Physical Volume Library.

Notes
The client should be aware that pvl_MountComplete could be called before the call to
pvr_Mount returns.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-21
Rev. 0

7.1.13. pvr_MountComplete

Purpose
Client is notifying the PVR that a requested mount has completed.

Syntax
#include "pvr_interface.h"

signed32 pvr_MountComplete(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
cart_t *Cart, /* IN */
side_t Side, /* IN */
drive_t *Drive, /* IN */
signed32 Result); /* IN */

Description
This function is called by the PVL when it detects a mounted cartridge that the PVR has not
informed the PVL about. This function is usually required when an operator mounts a cartridge,
because the PVR has no way to know when that mount has completed. The purpose of this
function is to tell the PVR which drive the cartridge was mounted in and to tell the PVR to stop
prompting for the cartridge mount (if necessary).

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Cart Cartridge that was mounted.

Side Side of cartridge that was mounted.

Drive Drive in which the cartridge was mounted.

Result The result of the mount.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EAUTH The client is not authorized for this API.

HPSS_EINVAL Nonexistent cartridge side specified.

HPSS_EMDM Metadata manager failure.

HPSS_ENOENT Cartridge not found.

See also
pvr_Mount, pvr_DismountCart, pvl_MountComplete.

Clients

Chapter 7: Physical Volume Repository Functions

7-22 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Physical Volume Library.

Notes
None.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-23
Rev. 0

7.1.14. pvr_PVRGetAttrs

Purpose
Get the current values of the attributes of the PVR.

Syntax
#include "pvr_interface.h"

signed32 pvr_PVRGetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
pvr_data_t *Attributes); /* OUT */

Description
Returns the value of all PVR attributes.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Attributes Structure containing all attributes of the PVR Managed Object.
Note that the definition of this structure is maintained in the SSM
chapter.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. If an error is returned, the value of Attributes is undefined.

Error conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EAUTH The client is not authorized for this API.

See also
pvr_PVRSetAttrs.

Clients
Storage System Manager.

Notes
None.

Chapter 7: Physical Volume Repository Functions

7-24 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

7.1.15. pvr_PVRSetAttrs

Purpose
Set the current values of the attributes of the PVR.

Syntax
#include "pvr_interface.h"

signed32 pvr_PVRSetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
u_signed64 InSelectBitmap, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
pvr_data_t *InAttributes, /* IN */
pvr_data_t *OutAttributes); /* OUT */

Description
Sets PVR attributes to the value of the corresponding field of the InAttributes argument. Only
those attributes identified by the InSelectBitmap field are set.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

InSelectBitmap Indicates which object attributes are to be set.

OutSelectBitmap Indicates which object attributes were actually set.

InAttributes New values of attributes to be set.

The RegisterBitmap field may be set to any value. The
CartsAlarmThreshold field may be set to any value.

OutAttributes Entire managed object, including newly updated fields.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EAUTH The client is not authorized for this API.

HPSS_EMDM Metadata manager failure.

HPSS_EINVAL Attempted to set a read-only attribute.

See also
pvr_PVRGetAttrs.

Clients
Storage System Manager.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-25
Rev. 0

Notes
The RegisterBitmap field will not be persistent across PVR restarts.

Chapter 7: Physical Volume Repository Functions

7-26 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

7.1.16. pvr_ServerGetAttrs

Purpose
Get the current values of the attributes of the PVR server.

Syntax
#include "pvr_interface.h"

signed32 pvr_ServerGetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
hpss_server_attrib_t *Attributes); /* OUT */

Description
Returns the value of all PVR server attributes.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Attributes Structure containing all attributes of the HPSS Server Managed
Object. Note that the definition of this structure is maintained in
the SSM chapter.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned. If an error is returned, the value of Attributes is undefined.

Error conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EAUTH The client is not authorized for this API.

See also
pvr_ServerSetAttrs.

Clients
Storage System Manager.

Notes
None.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-27
Rev. 0

7.1.17. pvr_ServerSetAttrs

Purpose
Set the current values of the attributes of the PVR server.

Syntax
#include "pvr_interface.h"

signed32 pvr_ServerSetAttrs(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
u_signed64 InSelectBitmap, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
hpss_server_attrib_t *InAttributes, /* IN */
hpss_server_attrib_t *OutAttributes); /* OUT */

Description
Sets PVR server attributes to the value of the corresponding field of the InAttributes argument.
Only those attributes identified by the InSelectBitmap field are set.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

InSelectBitmap Indicates which object attributes are to be set.

OutSelectBitmap Indicates which object attributes were actually set.

InAttributes New values of attributes to be set.

The RegisterBitmap attribute may be set to any value.

The AdministrativeState field may be set to:

ST_HALT - Halt the PVR immediately.

ST_SHUTDOWN - Halt the PVR gracefully.

ST_REINITALIZE - Re-read the drive configuration
information.

ST_REPAIRED - Set HardwareStatus to
STAT_ENABLED and set
OperationalState to
ST_NORMAL.

The HardwareStatus field may be set to:

STAT_ENABLED - also set OperationalState to
ST_NORMAL.

Any other value - also set OperationalState to
ST_BROKEN.

Chapter 7: Physical Volume Repository Functions

7-28 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

OutAttributes Entire managed object, including newly updated fields.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOTYET The server has not completed initializing.

HPSS_EAUTH The client is not authorized for this API.

HPSS_EINVAL Attempted to set one or more read-only attributes. The
NotifyBitmap indicates which attributes were successfully set.

HPSS_ENOTSUPPORTED Reinitializing AdministrativeState is not supported for the PVR.

See also
pvr_ServerGetAttrs.

Clients
Storage System Manager.

Notes
The RegisterBitmap field will not be persistent across PVR restarts.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-29
Rev. 0

7.2. Device Interfaces

7.2.1. device_Audit

Purpose
Reports the identity of cartridges in one or more storage locations. Not implemented for the
current release.

Syntax
#include "pvr_interface.h"

signed32 device_Audit(
location_t *Location); /* IN */

Description
This function starts a thread which runs asynchronously checking the cartridges in one or more
locations. The thread calls the CartridgeMoved function in the generic PVR for every cartridge it
finds (even those which don’t appear to have been moved).

Parameters
Location Identifies the location(s) to audit. A slot identifier has four fields -

- unit, panel, row, column. A value of -1 in one or more of these
fields acts as a wild card meaning search all. For example,
{5,10,-1,-1} will search all rows and columns in unit 5, panel 10.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOTSUPPORTED Operation not supported.

HPSS_EOPNOTSUPP Operation not supported.

See also
pvr_Audit.

Clients
Physical Volume Repository.

Notes
Not implemented for the current release.

Chapter 7: Physical Volume Repository Functions

7-30 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

7.2.2. device_Dismount

Purpose
Issue device specific commands to dismount a cartridge.

Syntax
#include "pvr_interface.h"

signed32 device_Dismount(
cart_t *Cart, /* IN */
side_t *Side, /* IN */
drive_addr_t *Drive, /* IN */
cart_t *EjectedCart, /* OUT */
location_t *Location); /* OUT */

Description
This function will dismount the cartridge or the drive. If either is NULL, the other will be used to
determine what to dismount. The caller should provide both arguments when possible.
Depending on robot, a cartridge which is mounted in a different drive may result in an error being
returned.

The function is responsible for verifying the external label on the cartridge if possible.

Parameters
Cart Cartridge to dismount. May be NULL if drive is specified.

Side Side of cartridge to dismount. Must be specified if Cart is
specified.

Drive Drive to dismount. May be NULL if cartridge is specified.

EjectedCart Cartridge which was dismounted..

Location Identifies the slot that the cartridge was returned to after being
dismounted. If the location argument is NULL, nothing will be
returned.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENODEV Drive not found.

HPSS_ENOENT Cartridge not found.

HPSS_EINVAL Drive specified doesn’t have a cartridge mounted.

See also
pvr_DismountCart, pvr_DismountDrive.

Clients
Physical Volume Repository.

Notes

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-31
Rev. 0

This function should succeed even if called before the original mount completes. It is acceptable
if the function blocks until the mount completes and then performs the dismount.

Chapter 7: Physical Volume Repository Functions

7-32 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

7.2.3. device_Eject

Purpose
Issue device specific commands to eject a cartridge.

Syntax
#include "pvr_interface.h"

signed32 device_Eject(
cart_data_t *CartData, /* IN */
location_t *Location); /* IN */

Description
This function will eject a cartridge from a repository.

The function is responsible for verifying the external label on the cartridge if possible.

Parameters
CartData Cartridge to eject.

Location Location currently holding cartridge, or location to place cartridge
when ejecting (device dependent).

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_EBUSY Unable to eject cartridge because the cartridge or the eject

mechanism are in use.

HPSS_ENOENT Cartridge not found.

See also
pvr_Eject.

Clients
Physical Volume Repository.

Notes
None.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-33
Rev. 0

7.2.4. device_Init

Purpose
Allow the repository to perform any initialization necessary.

Syntax
#include "pvr_interface.h"

void device_Init(void)

Description
Called once when the PVR starts to allow any device specific initialization to be performed.

Parameters
None.

Return values
None.

Error conditions
None.

See also
device_Release.

Clients
Physical Volume Repository.

Notes
None.

Chapter 7: Physical Volume Repository Functions

7-34 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

7.2.5. device_Inject

Purpose
Issue device specific commands to inject a new cartridge.

Syntax
#include "pvr_interface.h"

signed32 device_Inject(
cart_data_t *CartData, /* IN */
location_t *Location, /* IN */
location_t *ActualLocation); /* OUT */

Description
This function will accept a new cartridge in a repository. The function is responsible for verifying
the external label on the cartridge if possible.

Parameters
CartData Data describing new cartridge.

Location Location where the new cartridge was inserted. Not applicable
for all robots.

ActualLocation Identifies the slot the cartridge was placed in after being injected
into the repository.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_EEXIST A cartridge with the same ID is already in the repository.

HPSS_ENOSPACE The repository is full.

See also
pvr_Inject.

Clients
Physical Volume Repository.

Notes
None.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-35
Rev. 0

7.2.6. device_LocationToString

Purpose
Convert a location identifier to a human readable string.

Syntax
#include "pvr_interface.h"

void device_LocationToString(
location_t *Location, /* IN */
char *Text); /* OUT */

Description
Converts a location identifier to a human readable string that identifies the location in a way
specific to the repository.

Parameters
Location Location to identify. If invalid, the function should return a string

indicating the location is invalid, not an error code.

Text Human readable string.

Return values
None.

Error conditions
None.

See also
device_Dismount.

Clients
Physical Volume Repository.

Notes
None.

Chapter 7: Physical Volume Repository Functions

7-36 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

7.2.7. device_Mount

Purpose
Issue the device specific commands necessary to mount a cartridge.

Syntax
#include "pvr_interface.h"

signed32 device_Mount(
cart_t *Cart, /* IN */
side_t *Side, /* IN */
side_t TotalSides, /* IN */
signed32 Count, /* IN */
drive_t DriveList[], /* IN */
job_id_t Job, /* IN */
uuid_t *Uuid, /* IN */
short *Tries); /* IN */

Description
Commands are issued to the device to mount the requested cartridge in one of the drives
specified in the drive list.

The function returns immediately and the mount continues in a separate thread. When the mount
completes, the thread calls pvl_MountCompleted to notify the PVL that the cartridge is mounted.
It also updates the Status and CurrentLocation attributes of the cartridge in metadata.

The thread is responsible for verifying the external label on the cartridge if possible.

Parameters
Cart Cartridge to be mounted.

Side Side of cartridge to be mounted.

TotalSides Number of sides on the cartridge.

Count Number of drives listed in Drive argument.

DriveList List of possible drives for mount. The PVR may pick any drive
from this list. The drive selected by the repository must be on-
line.

Job The ID of the job which this mount is a part of.

Uuid ID of client that requested the mount. Used to send an
asynchronous reply.

Tries The number of times the mount has been attempted.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_EAGAIN The mount interface (e.g. robot) is not available. Error starting

mount thread.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-37
Rev. 0

HPSS_ENOMEM Unable to allocate memory(malloc).

See also
pvr_Mount, device_Dismount.

Clients
Physical Volume Repository.

Notes
The client should be aware that pvl_MountCompleted could be called before the call to
device_Mount returns.

Chapter 7: Physical Volume Repository Functions

7-38 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

7.2.8. device_MountComplete

Purpose
Allow any device specific cleanup when the client notifies the PVR that a cartridge is mounted.

Syntax
#include "pvr_interface.h"

signed32 device_MountComplete(
cart_t *Cart, /* IN */
side_t *Side, /* IN */
drive_addr_t *DriveAddr); /* IN */

Description
This function is called when the pvr_MountComplete API is called. This API will be called by the
client when the client detects that a cartridge has been mounted. The client is only required to call
this API when it has not been notified (via pvl_MountCompleted) that the mount has completed.
However, the client may call this API every time it determines that a cartridge has been mounted.

Parameters
Cart Cartridge that was mounted.

Side Side of cartridge that was mounted.

DriveAddr Drive in which the cartridge was mounted.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
None.

See also
pvr_MountComplete.

Clients
Physical Volume Repository.

Notes
None.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-39
Rev. 0

7.2.9. device_Release

Purpose
Allow the repository to perform any shutdown necessary.

Syntax
#include "pvr_interface.h"

void device_Release(void)

Description
Called once when the PVR shuts down to allow any device specific shut down to be performed.

Parameters
None.

Return values
None.

Error conditions
None.

See also
device_Init.

Clients
Physical Volume Repository.

Notes
It is not guaranteed that the PVR will call this function when shutting down. This function should
return quickly.

Chapter 7: Physical Volume Repository Functions

7-40 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

7.2.10. device_SetDrive

Purpose
Places a drive on-line or off-line. Not implemented in the current release.

Syntax
#include "pvr_interface.h"

signed32 device_SetDrive(
drive__t *Drive, /* IN */
signed32 *Status); /* IN */

Description
Used to place a drive on-line or off-line. A PVR should not try to mount to drives which are placed
off-line.

Parameters
Drive Drive to change.

Status One of PVR_ON_LINE or PVR_OFF_LINE.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENODEV Drive does not exist.

See also
device_Mount.

Clients
Physical Volume Repository.

Notes
If a drive is placed off-line while a cartridge is mounted, the drive will not go off-line until after the
cartridge is dismounted.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-41
Rev. 0

7.3. Data Definitions

This section describes key internal data definitions and all externally used data definitions which are
provided by this subsystem. A data definition may be represented by constructs such as data structures
and constants. For each data definition, a description, format (including parameter descriptions), and
clients which access the data definition are provided.

NOTE: We need to determine the total number of bytes of metadata required to scale the PVR to
500,000 physical volumes.

7.3.1. Cartridge Side - side_t

Description

Identifies the side of a cartridge. Side is a logical identifier which may refer to physical sides on an optical
platter, or logical sides in multiple tape partitions.

Format

The Side ID has the following format:

typedef signed32 side_t;

Clients

The following clients access the data definition:

Physical Volume Library, Storage System Manager.

7.3.2. drive_addr_t

Description

String with name of drive device, for example, "/dev/rmt01".

Format

The Drive Address has the following format:

typedef struct {
char Drive[DRIVE_ADDR_SIZE];

} drive_addr_t;

DRIVE_ADDR_SIZE is currently defined as 64.

Clients

The following clients access the data definition:

Storage System Manager.

7.3.3. ioport_addr_t

Description

String with name of I/O port.

Format

The I/O Port Address has the following format:

typedef struct {
char IOPort[IOPORT_ADDR_SIZE];

} ioport_addr_t;

Chapter 7: Physical Volume Repository Functions

7-42 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

IOPORT_ADDR_SIZE is currently defined as 64.

Clients

The following clients access the data definition:

Storage System Manager.

7.3.3. location_t

Description

Identifies a physical location within a PVR. The physical location can be occupied by a cartridge. Ideally
the port, slot, and drive fields could be combined in a union. However, union types are not allowed in
HPSS data that will be stored by the metadata manager.

Format

The Location ID has the following format:

typedef struct {
signed32 LocationType;
port_t Port;
slot_t Slot;
drive_t Drive;

} location_t;

LocationType

Identifies the type of the location. One of:

LOC_NONE

LOC_PORT

LOC_SLOT

LOC_DRIVE

Port

An import/export location or a passthru location (used to automatically pass a cartridge from one
repository to another).

Slot

A location where cartridges are stored in a repository when they are not in use. Identified with four
signed32 integers: unit, panel, row and column.

Drive

The unique ID of a drive in the HPSS system.

Clients

The following clients access the data definition:

Physical Volume Library, Storage System Manager.

7.3.4. cart_data_t

Description

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-43
Rev. 0

Contains all metadata for a single cartridge.

Format

The Cartridge Data has the following format:

typedef struct {
cart_t Cart;
signed32 Version;
u_signed64 RegisterBitmap;
side_t CartSides;
side_t CartMountSide;
uuid_t PVRId;
location_t CartLocation;
location_t CartHomeLocation;
media_type_t CartType;
manufacturer_t ManufacturerID;
lot_number_t LotNumber;
timestamp_t ServiceStartDate;
timestamp_t MaintenanceDate;
timestamp_t LastMountedDate;
signed32 MountsInService;
signed32 MountsSinceMaint;
signed32 OperationalState;
signed32 UsageState;
signed32 AdministrativeState;
signed32 MountStatus;
u_signed64 SecurityLevel[2];
cos_t ClassOfService;
job_id_t JobId;

} cart_data_t;

Cart

Cartridge ID. A six character string that represents the cartridge ID. This ID should be identical to the
external label on the cartridge if one exists.

Version

Version number.

RegisterBitmap

Identifies those fields for which the SSM has registered to be notified when they change.

CartSides

Number of sides on the cartridges. Must be between 1 and 256 inclusive.

CartMountSide

The currently mounted side of the cartridge.

PVRId

ID of PVR managing the cartridge.

CartLocation

Current location of the cartridge.

CartHomeLocation

The home location of the cartridge if one exists.

CartType

Chapter 7: Physical Volume Repository Functions

7-44 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Media type of the cartridge, i.e. 3480, D2, 8MM, etc. Refer to the Physical Volume Library Functions
chapter for a description of media_type_t.

ManufacturerID

Cartridge manufacturer. Site defined string.

LotNumber

Cartridge lot number. Site defined string.

ServiceStartDate

Date cartridge entered HPSS system.

MaintenanceDate

Date cartridge was last cleaned or retensioned.

LastMountedDate

Date cartridge was last mounted.

MountsInService

Total number of mounts since cartridge entered HPSS system.

MountsSinceMaint

Number of mounts since the cartridge was last cleaned or retensioned.

OperationalState

SSM defined operational state.

UsageState

SSM defined usage state.

AdministrativeState

SSM defined administrative state.

MountStatus

One of: PVR_MOUNT_PENDING, PVR_MOUNTED, PVR_DISMOUNT_PENDING,
PVR_EJECT_PENDING or PVR_DISMOUNTED.

SecurityLevel

Security Level of cartridge.

ClassOfService

HPSS class of service as applied to cartridge.

JobId

A mounted cartridge is a member of this job ID.

Clients

The following clients access the data definition:

Storage System Manager, NSL UniTree Migration.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-45
Rev. 0

7.3.5. pvr_data_t

Description

Contains all metadata for a single PVR.

Format

The PVR Data has the following format:

typedef struct {
uuid_t PVRId;
uuid_t PVLId;
signed32 Version;
u_signed64 RegisterBitmap;
signed32 TotalCartridges;
signed32 CartsAlarmThreshold;
signed32 CartsCapacity;
signed32 SameJobOnController;
signed32 OtherJobOnController;
signed32 DistanceToDrive;
u_signed64 CharacteristicsBitmap;
char CartFileName[HPSS_MAX_DCE_NAME];
char DeviceSpecificA[HPSS_MAX_DCE_NAME];
char DeviceSpecificB[HPSS_MAX_DCE_NAME];

} pvr_data_t;

PVRId

Unique ID of the PVR.

PVLId

Unique ID of the PVL.

Version

Version of the metadata structure.

RegisterBitmap

Bitmap that shows which PVR attributes the SSM has registered for change notification.

TotalCartridges

The total number of cartridges currently managed by the PVR.

CartsAlarmThreshold

The maximum number of cartridges the PVR can hold before beginning to issue "PVR almost full" alert
messages.

CartsCapacity

The maximum number of cartridges the PVR can hold.

SameJobOnController

Weighted value used to select the preferred drive.

OtherJobOnController

Weighted value used to select the preferred drive.

DistanceToDrive

Weighted value used to select the preferred drive.

Chapter 7: Physical Volume Repository Functions

7-46 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

CharacteristicsBitmap

Bitmap which represents the state of configurable PVR settings.

CartFileName

Name of SFS file which stores cartridge data for this PVR.

DeviceSpecificA

Available for PVR specific information.

DeviceSpecificB

Available for PVR specific information.

Clients

The following clients access the data definition:

Storage System Manager.

7.3.6. Manufacturing Lot Number - lot_number_t

Description

This structure specifies the cartridge manufacturing lot number.

Format
typedef struct {

idl_char LotNumber[LOT_NUMBER_SIZE];
} lot_number_t;

Clients

The following clients access the data definition:

Physical Volume Library, Storage System Manager

7.3.7. Cartridge Manufacturer - manufacturer_t

Description

This structure specifies the cartridge manufacturer.

Format
typedef struct {

idl_char Manufacturer[MANUFACTURER_SIZE];
} manufacturer_t;

Clients

The following clients access the data definition:

Physical Volume Library, Storage System Manager

7.3.8. Check-in request - checkin_req_t

Description

Contains information for a check-in request.

Format

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-47
Rev. 0

A shelf tape request has the following format:

typedef struct {
uuid_t PVRId;
cart_t Cart;
unsigned64 RegisterBitmap;

} checkin_req_t;

PVRId

Unique id of the PVR.

Cart

Cartridge label.

RegisterBitmap

Bitmap that shows which PVR attributes the SSM has registered for change notification.

Clients

The following clients access the data definition:

Physical Volume Library.

Chapter 7: Physical Volume Repository Functions

7-48 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

7.3.9. Other APIs

7.3.9.1. pvl_MountCompleted

Purpose
Allows PVR to notify the PVL when a cartridge mount has completed.

Syntax
signed32 pvl_MountCompleted(

handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
cart_t *Cart, /* IN */
side_t *Side, /* IN */
drive_t *Drive, /* IN */
job_id_t JobId, /* IN */
pvl_status TheStatus); /* IN */

Description
This function should be provided by any client that calls pvr_Mount. The function will be called by
the PVR once the cartridge is mounted. The function may be called as soon as the pvr_Mount
function is called (possibly before the pvr_Mount function returns). The function will be called as
an RPC by the PVR.

Parameters
Bh RPC binding handle.

Ch HPSS connect handle.

Cart Cartridge that was mounted.

Side Side of cartridge that was mounted.

Drive Drive in which the cartridge was mounted.

JobId Job associated with the mount.

TheStatus Indicates the status of the mount. One of:

SUCCESS The cartridge was mounted and is ready for
read/write operations.

ERROR The cartridge could not be mounted. The Drive
argument is undefined when ERROR is
returned.

CANCEL The mount was canceled. The Drive argument
is undefined when CANCEL is returned.

Return values
Upon successful completion, the function will return a zero (0). If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOTYET The server has not completed initializing.

Chapter 7: Physical Volume Repository Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 7-49
Rev. 0

HPSS_EAUTH The client is not authorized for this API.

HPSS_ESRCH The drive/cartridge/activity/job was not found.

HPSS_EINVAL Invalid argument(drive was NULL).

HPSS_EBUSY The drive’s operational state is no longer enabled.

See also
pvr_Mount, pvr_MountComplete.

Clients
The PVL will provide this function, the Physical Volume Repository is a client.

Notes
If an error other than HPSS_ESRCH is returned to the PVR. The PVL will elevate the cartridge
from the current drive and the PVR will attempt to mount the cartridge in another drive which was
provided in the mount drive list.

Chapter 7: Physical Volume Repository Functions

7-50 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-1
Rev. 0

8. System Manager Functions

This chapter specifies the System Manager programming interface. Specifically, the following information
is provided:

Application Programming Interfaces (APIs)

Data Definitions

8.1. API Functions

The System Manager supplies an interface for its clients, each of which is an SSM Data Server, to
perform management tasks for the HPSS System. The Data Server establishes contact with the System
Manager with ssm_CheckIn and disconnects with ssm_CheckOut. It manipulates configuration files with
ssm_ConfigAdd, ssm_ConfigDelete, ssm_ConfigGetDefault, ssm_ConfigRead, and
ssm_ConfigUpdate. It starts, stops, reinitializes, repairs, and connects to servers with ssm_Adm. It
monitors and manipulates managed objects managed by other HPSS servers with ssm_AttrGet,
ssm_AttrReg, and ssm_AttrSet. It manages storage media with ssm_CartImport, ssm_CartExport,
ssm_CartMove, ssm_ResourceCreate, ssm_ResourceDelete, ssm_ResourceRepack, and
ssm_ResourceReclaim. It performs other system administration tasks with ssm_DriveDismount,
ssm_JobCancel, ssm_Delog, ssm_AcctChange, and ssm_AcctRun. The System Manager also
performs fileset and junction management functions using ssm_FilesetCreate, ssm_FilesetDelete,
ssm_JunctionCreate and ssm_JunctionDelete.

This section describes all API interfaces which are provided for use by another HPSS subsystem or by a
client external to HPSS. The API interface specification includes the following information:

Name

Syntax

Description

Parameters

Return Values

Error Conditions

Related Information

Clients

Notes

Chapter 8: System Manager Functions

8-2 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.1.1. ssm_AcctChange

Purpose
Change the account ID on a file.

Syntax
#include "ssm_types.h"

signed32 ssm_AcctChange(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ClientID, /* IN */
SrvInfoUnion_t *ObjectID, /* IN */
acct_rec_t AcctID, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description:
Changes the account ID on the specified bitfile.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

ClientID Index into Client List.

ObjectID ID of the object (file) for which to change the account.

AcctID New account ID to assign to the object.

RPCStatus DCE return code.

Return values
Upon successful completion, the operation returns 0. Otherwise, the appropriate error code is
returned.

Error conditions
HPSS_ENOTREADY System Manager is not yet initialized.

SSM_EACCESS Client does not have permission for operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_EINVALID_OBJID Invalid object ID for bitfile.

SSM_EINVALID_IN Invalid input.

See also
ssm_AcctRun.

Clients
SSM Data Server.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-3
Rev. 0

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-4 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.1.2. ssm_AcctRun

Purpose
Run HPSS accounting

Syntax
signed32 ssm_AcctRun(

handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ClientID, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description:
Start the accounting program. Refuse to run it if no accounting policy exists.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

ClientID Index into SSM_SM_client.

RPCStatus DCE return code.

Return values
Upon successful completion, the operation returns 0. Otherwise, the

appropriate error code is returned.

Error conditions
HPSS_ENOTREADY System Manager is not yet initialized.

SSM_EACCESS Client does not have permission for operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_ECANT_MALLOC Can’t malloc.

SSM_ESM_INTERNAL_ERROR
Fork or exec failed.

SSM_ENO_ACCT_POLICY No accounting policy has yet been defined.

See also
ssm_AcctChange.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-5
Rev. 0

8.1.3. ssm_Adm

Purpose
Perform administrative requests on one or more servers.

Syntax
#include "ssm_types.h"
signed32 sm_Adm(

handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 OperationID, /* IN */
unsigned32 ServerID, /* IN */
unsigned32 ClientID, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description:
Processes requests from clients to perform administrative functions, including starting,
reinitializing, repairing, connecting to, and stopping one or all subsystems. If ServerID is
SSM_MAX_SERVER, the operation will be attempted for all servers.

Supported operations:

SSM_ADM_HPSS_SHUT Shutdown HPSS. Perform an orderly shutdown of all the
servers except SSM and the Startup Daemon.

SSM_ADM_SRV_HALT Halt one or more servers. Request that the server change the
AdministrativeState of his server managed object to ST_HALT
and exit. In addition, ask the startup demon to send him a kill
signal.

SSM_SRV_CONNECT Signal the thread monitoring this server to awaken and try to
connect to him.

SSM_ADM_SRV_REINIT Reinitialize one or all servers. Request that the server change
the AdministrativeState of his server managed object to
ST_REINIT and reread his configuration files.

SSM_ADM_SRV_REPAIRED Notify a server of repair. Request that the server change the
AdministrativeState of his server managed object to
ST_REPAIRED and clear his error statuses.

SSM_ADM_SRV_SHUT Shutdown one or all servers. Request that the server change the
AdministrativeState of his server managed object to
ST_SHUTDOWN and proceed with an orderly shutdown.

SSM_ADM_SRV_START Start one or all servers.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

OperationID Operation code.

Chapter 8: System Manager Functions

8-6 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

ServerID Server ID; index of server in the Server List supplied by the
System Manager to its clients.

ClientID Client ID; index of client in the System Manager’s list of clients.

RPCStatus RPC error code, supplied by DCE.

Return values
For the operations of starting, shutting down, or halting all servers, the function returns a positive
number indicating the number of servers for which the operation successfully completed. Upon
successful completion for other operations, the function returns 0. If an error occurs, the negated
error code is returned.

Error conditions
HPSS_ENOTSUPPORTED Operation not supported by server.

HPSS_EALREADY_RUNNING A request was made to start a server that was already running.

HPSS_ENOTREADY The System Manager is not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_EINVALID_IN Invalid input.

SSM_EINVALID_OP Invalid operation code.

SSM_ESHUT_FAIL Shutdown failed.

SSM_ECANT_MALLOC Can’t malloc.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable timed out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_ESTART_NO_EXEC The EXECUTE_SERVER_FLAG bit is not set in the Flags field of
the server in the HPSS Server Configuration file.

SSM_EBIND_FAIL The System Manager was unable to bind to either the server or
its startup demon.

SSM_EINVALID_MO Invalid managed object (internal System Manager failure).

SSM_EINVALID_SRVID Invalid server ID.

SSM_EINVALID_SRVTYPE Invalid server type (internal System Manager failure).

SSM_ENO_STARTUP The startup demon for the server’s system could not be found in
the HPSS Server Configuration file.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-7
Rev. 0

SSM_ERPC_ERROR RPC error.

SSM_ESRV_NOT_FOUND Server not found.

SSM_ESTART_FAIL Startup failed.

See also
None.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Currently, the SSM Data Server does not use the "ALL" capability of this operation. It requests
each operation only on one server at a time.

SSM cannot shut down the Startup Daemon.

Chapter 8: System Manager Functions

8-8 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.1.4. ssm_AttrGet

Purpose
Get managed object attributes.

Syntax
#include "ssm_types.h"

signed32 ssm_AttrGet(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ServerID, /* IN */
unsigned32 ClientID, /* IN */
unsigned32 MOClass, /* IN */
SrvInfoUnion_t *ObjectID, /* IN */
SrvInfoUnion_t *OutData, /* OUT */
unsigned32 *RPCStatus); /* OUT */

Description:
The function ssm_AttrGet retrieves the attributes of the requested managed object.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

ServerID Server ID; index of server in the Server List supplied by the
System Manager to its clients.

ClientID Client ID; index of client in the System Manager’s list of clients.

MOClass Type of managed object requested.

ObjectID Object ID.

OutData Returned managed object.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion ssm_AttrGet returns the value returned from the requested server
API. If an error occurs, the negated error code is returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_EINVALID_OPMO Invalid operation for the managed object.

SSM_ECLIENT_NOT_REG Client is not registered.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-9
Rev. 0

SSM_ECANT_FIND_PVR The System Manager cannot determine which PVR controls the
requested cartridge.

SSM_ECANT_FIND_SS The System Manager cannot determine which Storage Server
controls the requested volume.

SSM_EINVALID_IN Invalid input.

SSM_EINVALID_SRVTYPE Invalid server type found in System Manager’s server list; this is
an internal system manager problem.

SSM_EINVALID_MO Invalid managed object type.

SSM_EINVALID_OBJID Invalid object ID.

SSM_EINVALID_SRVID Invalid server ID.

SSM_EINVALID_MO_SRVTYPE
Invalid managed object type for this server type.

SSM_ECANT_MALLOC Can’t malloc.

SSM_EBIND_FAIL Can’t bind to server.

SSM_EMUTEX_FAIL Mutex failure.

SSM_ERPC_ERROR RPC error.

Return code from subsystem’s get attribute API.

See also
ssm_AttrSet, ssm_AttrReg.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-10 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.1.5. ssm_AttrReg

Purpose
Register an SSM client to receive notifications of data changes in managed objects.

Syntax
#include "ssm_types.h"

signed32 ssm_AttrReg(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ServerID, /* IN */
unsigned32 ClientID, /* IN */
unsigned32 MOClass, /* IN */
SrvInfoUnion_t *ObjectID, /* IN */
u_signed64 RegisterBitmap, /* IN */
SrvInfoUnion_t *OutData, /* OUT */
unsigned32 *RPCStatus); /* OUT */

Description
The function ssm_AttrReg registers with the specified server to receive notifications of data
changes in the specified managed object. A current copy of the managed object is returned in
OutData.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

ServerID Server ID; index of server in the Server List supplied by the
System Manager to its clients.

ClientID Client ID; index of client in the System Manager’s list of clients.

MOClass Type of managed object.

ObjectID Object ID.

RegisterBitmap Fields for which to register.

OutData The complete new managed object.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion ssm_AttrRet returns the value returned from the set attribute API for
the requested managed object. If an error occurs, the negated error code is returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-11
Rev. 0

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_ECANT_FIND_PVR The System Manager can’t determine the PVR to which the
requested cartridge belongs.

SSM_ECANT_FIND_SS The System Manager can’t determine the Storage Server to
which the requested volume belongs.

SSM_EBIND_FAIL System manager cannot bind to server.

SSM_ECANT_MALLOC Can’t malloc space for input object.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_EINVALID_IN Invalid input; this is an internal System Manager problem.

SSM_EINVALID_MO Invalid managed object code.

SSM_EINVALID_OBJID Invalid object ID.

SSM_EINVALID_SRVID Invalid server ID.

SSM_EINVALID_SRVTYPE Invalid server type (internal System Manager failure).

SSM_EMUTEX_FAIL Mutex failure.

SSM_ENULL_PTR Null pointer; this is an internal system manager problem.

SSM_ERPC_ERROR RPC error.

SSM_ESRV_NOT_FOUND Server not found.

Return code from subsystem’s set attribute API.

See also
ssm_AttrGet, ssm_AttrSet.

Clients
SSM Data Server.

Notes
The returned managed object will contain a RegisterBitmap for all notifications for which the
managed object is registered, which might include registrations from clients other than the one
making this request.

The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-12 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.1.6. ssm_AttrSet

Purpose
Set managed object attributes.

Syntax
#include "ssm_types.h"

signed32 ssm_AttrSet(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ServerID, /* IN */
unsigned32 ClientID, /* IN */
SrvInfoUnion_t *ObjectID, /* IN */
u_signed64 InBitmap, /* IN */
u_signed64 *OutBitmap, /* OUT */
SrvInfoUnion_t *InData, /* IN */
SrvInfoUnion_t *OutData, /* OUT */
unsigned32 *RPCStatus); /* OUT */

Description
The function ssm_AttrSet sets the attributes of the specified managed object.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

ServerID Server ID; index of server in the Server List supplied by the
System Manager to its clients.

ClientID Client ID; index of client in the System Manager’s list of clients.

ObjectID Object ID.

InBitmap Fields to set.

OutBitmap Fields actually set.

InData Managed object holding values to set.

OutData Managed object holding values actually set.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion ssm_AttrSet returns the value returned from the requested server
API. If an error occurs, the negated error code is returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-13
Rev. 0

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_ECANT_FIND_PVR The System Manager cannot determine which PVR controls the
requested cartridge.

SSM_ECANT_FIND_SS The System Manager cannot determine which Storage Server
controls the requested volume.

SSM_EBIND_FAIL System manager cannot bind to server.

SSM_ECANT_MALLOC Can’t malloc.

SSM_EINVALID_IN Invalid input.

SSM_EINVALID_MO Invalid managed object.

SSM_EINVALID_OBJID Invalid object ID.

SSM_EINVALID_SRVID Invalid server ID.

SSM_EINVALID_SRVTYPE Invalid server type.

SSM_EMUTEX_FAIL Mutex failure.

SSM_ENULL_PTR Invalid null pointer (internal System Manager failure).

SSM_ERPC_ERROR RPC error.

SSM_ESRV_NOT_FOUND Server not found.

Return code from subsystem’s set attributes API.

See also
ssm_AttrGet, ssm_AttrReg.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-14 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.1.7. ssm_CartExport

Purpose
Export cartridges from the PVL.

Syntax
#include "ssm_types.h"

signed32 ssm_CartExport(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ClientID, /* IN */
unsigned32 PVLID, /* IN */
PvlCartInfo_t *CartData, /* IN */
unsigned32 *NumProcessed, /* OUT */
unsigned32 *RPCStatus); /* OUT */

Description:
The ssm_CartExport function exports a list of cartridges from the PVL.

Parameters
Bh DCE binding handle.

Ch HPSS connection handle.

ClientID Index of client into Client List.

PVLID PVL ID.

CartData Identifying information for list of cartridges to be exported. It
includes a list of cartridges and the total number of cartridges.

NumProcessed Number of cartridges successfully exported.

RPCStatus RPC error code, set by DCE.

Return values
Upon successful completion the function returns 0 and NumProcessed will be equal to
CartData.NumCarts. If an error occurs, the negated error code is returned and NumProcessed is
set to the array index of the cartridge on which the error occurred.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_EINVALID_IN Invalid input.

The return code from pvl_Export

See also

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-15
Rev. 0

ssm_CartImport, ssm_CartMove, ssm_ResourceCreate, ssm_ResourceDelete.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-16 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.1.8. ssm_CartImport

Purpose
Import cartridges into the PVL.

Syntax
#include "ssm_types.h"

signed32 ssm_CartImport(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ClientID, /* IN */
unsigned32 PVLID, /* IN */
PvlCartInfo_t *CartData, /* IN */
PvlImport_t *ImportData, /* IN */
unsigned32 *NumProcessed, /* OUT */
unsigned32 *RPCStatus); /* OUT */

Description:
The ssm_CartImport function imports the list of cartridges specified into the PVL.

Parameters
Bh DCE binding handle.

Ch HPSS connection handle.

ClientID Client ID.

PVLID PVL ID.

CartData Identifying information for the list of cartridges to be imported,
including the names and the total number in the list.

ImportData Data required by the PVL for importing cartridges. It includes:

PVRID Index of PVR into Server List.

MaxDrives Maximum drives to devote to import.

MediaType Media type.

ImportType Import type (Scratch or HPSS).

Sides Number of sides or partitions.

Manu Manufacturer.

Lot Lot.

NumProcessed Number of cartridges processed successfully.

RPCStatus RPC return code, supplied by DCE.

Return values

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-17
Rev. 0

Upon successful completion the function returns 0 and NumProcessed will be equal to
CartData.NumCarts. If an error occurs, the negated error code is returned and NumProcessed is
set to the number (the array index) of the cartridge on which the error occurred.

ssm_CartImport creates up to MaxDrives threads each of which processes a portion of the
cartridge list concurrently. Whether MaxDrives cartridges will actually be mounted and processed
concurrently depends upon the number of drives available to the system and the load from other
jobs.

If a specified cartridge has already been imported, this routine returns success for it.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation..

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_EINVALID_IN Invalid input.

SSM_ECANT_MALLOC Can’t malloc.

SSM_ESM_INTERNAL_ERROR
Can’t create threads or join with them.

The return code from pvl_Import.

See also
ssm_CartExport, ssm_CartMove, ssm_ResourceCreate, ssm_ResourceDelete.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-18 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.1.9. ssm_CartMove

Purpose
Move a cartridge from one PVR to another.

Syntax

#include "ssm_types.h"

signed32 ssm_CartMove(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ClientID, /* IN */
unsigned32 PVLID, /* IN */
uuid_t *PVRID, /* IN */
cart_t *Cart, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description:
The ssm_CartMove function moves a cartridge from one PVR to another. Only the target PVR is
specified, as the PVL should be able to figure out the PVR in which the cartridge currently resides.

Parameters
Bh DCE binding handle.

Ch HPSS connection handle.

ClientID Client ID.

PVLID PVL ID.

PVRID Destination PVR.

Cart Cartridge ID.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_EINVALID_IN Invalid input.

SSM_ESRV_NOT_FOUND Server not found.

The return code from pvl_Move.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-19
Rev. 0

See also
ssm_CartExport, ssm_CartImport, ssm_ResourceCreate, ssm_ResourceDelete.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-20 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.1.10. ssm_CheckIn

Purpose
Accept check-ins from Data Server clients.

Syntax
#include "ssm_types.h"

signed32 ssm_CheckIn(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
char *ClientName, /* IN */
unsigned32 ListFlags, /* IN */
unsigned32 InClientID, /* IN */
unsigned32 *OutClientID, /* OUT */
unsigned32 *RPCStatus); /* OUT */

Description:
The ssm_CheckIn function accepts check-in requests from clients. On a client’s first call to
ssm_CheckIn, the client supplies SSM_NEW_CLIENT as the InClientID. The System Manager
adds the client to its list of clients and returns the OutClientID.

On subsequent calls by a client to ssm_CheckIn, the client supplies its valid client ID as
InClientID.

On every check-in, the System Manager asynchronously sends the client a current copy of every
shared list (the Server List, Driver List, Class of Service List, Storage Class List, Hierarchy List,
Migration Policy List, and Purge Policy List).

Parameters
Bh RPC handle.

Ch HPSS connection handle.

ClientName Client’s CDS name.

ListFlags A bitmask representing which lists the client wants.

InClientID Client’s index into the System Manager’s list of known clients;
supplied by client on all calls to ssm_CheckIn except first;
required from client in all subsequent communication with the
System Manager.

OutClientID Supplied by server to client on first call to ssm_CheckIn only.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-21
Rev. 0

SSM_ECLIENT_NOT_REG Client never checked in before.

SSM_EINVALID_CLIENT_ID Invalid client ID.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_EMUTEX_FAIL Mutex failure.

SSM_ENO_CLIENT_SLOTS No more client slots available.

See also
ssm_CheckOut.

Clients
SSM Data Server.

Notes
The ListFlags parameter is intended for future use and is ignored by the System Manager.

The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-22 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.1.11. ssm_CheckOut

Purpose
Accept checkouts from SSM Data Server clients.

Syntax
#include "ssm_types.h"

signed32 ssm_CheckOut(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ClientID, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_CheckOut function accepts check-out requests from clients. It removes the client from
the System Manager’s list of clients and from the table of registered attributes, and frees the
binding handle for the client.

Clients who cannot be reached by the System Manager within a set time limit are checked out
automatically.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

ClientID Client ID; index of client in the System Manager’s list of clients.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_ECLIENT_NOT_REG Client never checked in.

SSM_EINVALID_CLIENT_ID Invalid client ID.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_ECANT_MALLOC Can’t malloc.

SSM_ESM_INTERNAL_ERROR System
Manager internal error.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-23
Rev. 0

See also
ssm_CheckIn.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-24 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.1.12. ssm_ConfigAdd

Purpose
Add new entries to configuration files.

Syntax
signed32 ssm_ConfigAdd(

handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 FileOwner, /* IN */
unsigned32 ClientID, /* IN */
SrvInfoUnion_t *InData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description:
The ssm_ConfigAdd function adds a new entry to a configuration file.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

FileOwner ID of the server which references the configuration file; index of
server in the Server List supplied by the System Manager to its
clients.

ClientID Client ID; index of client in the System Manager’s list of clients.

InData New configuration file entry to create.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_ESRV_MUST_BE_DOWN
Server must be down to change its configuration.

SSM_EOPEN_FAIL Failure opening SFS file.

SSM_ENO_ACCT_POLICY Specified accounting policy style is invalid.

SSM_ESCFIRST_SSM A server of type SSM must be added to the generic configuration
before any other type.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-25
Rev. 0

SSM_EINVALID_OPCF Invalid operation for this configuration file; trying to add either a
device or drive file without adding the other.

SSM_ETRANABORT Transaction aborted.

SSM_EALREADY_IN_CF Entry was already in configuration file.

SSM_EMMFAIL Metadata manager failure.

SSM_ECDS_CREATE_FAIL When a server was being added to the generic configuration file,
the creation of the CDS directory, the creation of its Security
object, and/or the setting of the ACLs on one or both failed.
However, if the System Manager got this far, the requested entry
was added to the configuration file.

SSM_ENULL_PTR Invalid input; a null pointer was supplied where a value was
required.

SSM_EINVALID_IN Invalid input.

SSM_EINVALID_CF Invalid configuration file type.

SSM_ECF_LIST_BAD Although the Add operation completed successfully, the System
Manager’s internal list of configuration files is corrupted.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_EMUTEX_FAIL Mutex failure.

SSM_ENO_SUCH_CF No such configuration file.

See also
ssm_ConfigDelete, ssm_ConfigGetDefault, ssm_ConfigRead, ssm_ConfigUpdate.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-26 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.1.13. ssm_ConfigDelete

Purpose
Delete an entry from a configuration file.

Syntax
#include "ssm_types.h"

signed32 ssm_ConfigDelete(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 FileOwner, /* IN */
unsigned32 ClientID, /* IN */
unsigned32 CFClass, /* IN */
SrvInfoUnion_t *ObjectID, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_ConfigDelete function deletes an entry from a configuration file.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

FileOwner ID of the server which references the configuration file; index of
server in the Server List supplied by the System Manager to its
clients.

ClientID Client ID; index of client in the System Manager’s list of clients.

CFClass Type of configuration file to update.

ObjectID Index key of entry to delete.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_ESRV_MUST_BE_DOWN
Server must be down during this operation.

SSM_ESM_INTERNAL_ERROR
Internal System Manager error.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-27
Rev. 0

SSM_ENO_SUCH_CF No such configuration file.

SSM_EOPEN_FAIL Cannot open file.

SSM_EDEV_PARTNER_EXISTS
Attempt to delete a drive when the corresponding device still
exists, or a device when the corresponding drive still exists.

SSM_EINVALID_CF Invalid configuration file type.

SSM_ETRANABORT Transaction aborted.

SSM_ENOT_IN_CF Entry is not in configuration file.

SSM_EMMFAIL Metadata manager failure.

SSM_ECANT_MALLOC Can’t malloc.

SSM_EINVALID_IN Invalid input.

SSM_EINVALID_OBJID Invalid object ID.

SSM_ESRV_NOT_FOUND Server not found.

SSM_ECF_LIST_BAD Although the Delete operation completed successfully, the
System Manager’s internal list of configuration files is corrupted.

SSM_ENO_SUCH_DEVICE device not found in configuration file.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out

SSM_EINVALID_OPCF Invalid operation for this configuration type; trying to delete a
device entry without deleting the corresponding drive entry, or
vice versa.

SSM_EMUTEX_FAIL Mutex failure.

See also
ssm_ConfigAdd, ssm_ConfigGetDefault, ssm_ConfigRead, ssm_ConfigUpdate.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-28 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.1.14. ssm_ConfigGetDefault

Purpose
Obtain a default entry for a configuration file.

Syntax
#include "ssm_types.h"

signed32 ssm_ConfigGetDefault(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ClientID, /* IN */
unsigned32 *ServerType, /* IN */
unsigned32 *ServerSubType, /* IN */
unsigned32 ServerID, /* IN */
unsigned32 CFClass, /* IN */
SrvInfoUnion_t *Entry, /* OUT */
unsigned32 *RPCStatus); /* OUT */

Description:
The ssm_ConfigGetDefault function gets a default entry for an HPSS configuration file.

For Server Configuration File entries, a valid ServerType, and ServerSubType if applicable, must
be specified. Currently, SubType applies only to Storage Servers and PVRs.

For specific server configuration files, such as the BFS Configuration File, a valid ServerID must
be supplied. The returned entry will include the descriptive name and uuid of the specified server.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

ClientID Index of client into Client List.

ServerType Type of server; ignored if not needed.

ServerSubType SubType of server; ignored if not needed.

ServerID Server ID; index of server in the Server List supplied by the
System Manager to its clients; SSM_MAX_SERVERS if not
needed.

CFClass Type of configuration file.

Entry The returned default entry.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion the function returns 0. In the event the specific server configuration
file already has an entry for that server, ssm_ConfigGetDefault returns the existing entry instead
of creating a new default entry, and returns SSM_ESRV_ALREADY_IN_CF. If an error occurs,
the negated error code is returned.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-29
Rev. 0

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CF Invalid configuration file type.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_EINVALID_IN Invalid input.

SSM_EINVALID_OPCF Invalid operation for this configuration type.

SSM_EOPEN_FAIL Could not open configuration file.

SSM_EALREADY_IN_CF Entry was already in configuration file.

SSM_EMMFAIL Metadata manager failure.

SSM_ESCFIRST_SSM SSM must be the first entry added to the file.

SSM_ESCFIRST_BFS_DEPEND
The MPS, Name Server, and Storage Server entries must be
added to the generic server configuration file before the BFS
Specific Configuration entry may be created.

SSM_ESCFIRST_MPS_DEPEND
The BFS and Storage Server entries must be added to the
generic server config file before the MPS Specific Configuration
entry may be created.

SSM_ESCFIRST_NS_DEPEND The
BFS entry must be added to the generic server config file before
the Name Server Specific Configuration entry may be created.

SSM_ESCFIRST_PVR_DEPEND
The PVL entry must be added to the generic server configuration
file before the PVR Specific Configuration entry may be created.

SSM_ESCFIRST_SS_DEPEND The PVL entry must be added to the generic server configuration
file before the Storage Server Specific Configuration entry may
be created.

SSM_ETRANABORT Transaction aborted.

SSM_ENO_SUCH_CF No such configuration file.

See also
ssm_ConfigAdd, ssm_ConfigDelete, ssm_ConfigRead, ssm_ConfigUpdate.

Clients
SSM Data Server.

Chapter 8: System Manager Functions

8-30 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-31
Rev. 0

8.1.15. ssm_ConfigRead

Purpose
Read configuration file entry.

Syntax
#include "ssm_types.h"

signed32 ssm_ConfigRead(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 FileOwner, /* IN */
unsigned32 ClientID, /* IN */
unsigned32 CFClass, /* IN */
SrvInfoUnion_t *ObjectID, /* IN */
u_signed64 *BfOffset, /* IN */
signed32 *BfStorageType, /* IN */
SrvInfoUnion_t *OutData, /* OUT */
unsigned32 *RPCStatus); /* OUT */

Description:
The ssm_ConfigRead function reads an entry from a configuration file.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

FileOwner ID of the server which references the configuration file; index of
server in the Server List supplied by the System Manager to its
clients.

ClientID Client ID; index of client in the System Manager’s list of clients.

CFClass Type of configuration file.

ObjectID Index key of entry to read.

BfOffset Offset; used for bitfile segment only.

BfStorageType Storage type; used for bitfile segment only.

OutData Returned configuration file entry.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

Chapter 8: System Manager Functions

8-32 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_EOPEN_FAIL Can’t open file.

SSM_EINVALID_OPCF Invalid operation for this configuration type.

SSM_EINVALID_CF Invalid configuration file type.

SSM_EMMFAIL Metadata manager failure.

SSM_ETRANABORT Transaction aborted.

SSM_ENOT_IN_CF Entry is not in configuration file.

SSM_EINVALID_IN Invalid input.

SSM_EINVALID_OBJID Invalid object ID.

SSM_ECANT_MALLOC Can’t malloc.

SSM_ENO_SUCH_CF No such configuration file.

See also
ssm_ConfigAdd, ssm_ConfigDelete, ssm_ConfigGetDefault, ssm_ConfigUpdate.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-33
Rev. 0

8.1.16. ssm_ConfigUpdate

Purpose
Update configuration file entries.

Syntax
#include "ssm_types.h"

signed32 ssm_ConfigUpdate(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 FileOwner, /* IN */
unsigned32 ClientID, /* IN */
SrvInfoUnion_t *InData, /* IN */
unsigned32 AttrList, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description:
The ssm_ConfigUpdate function updates a configuration file entry.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

FileOwner ID of the server which references the configuration file; index of
server in the Server List supplied by the System Manager to its
clients.

ClientID Client ID; index of client in the System Manager’s list of clients.

InData Entry to update.

AttrList Bitmask representing fields to update.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_ESRV_MUST_BE_DOWN
Server must be down to update configuration.

SSM_ESM_INTERNAL_ERROR
System Manager internal error.

Chapter 8: System Manager Functions

8-34 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

SSM_EOPEN_FAIL Can’t open file.

SSM_EINVALID_OPCF Invalid operation for this configuration file.

SSM_ETRANABORT Transaction aborted.

SSM_EINVALID_CF Invalid configuration file type.

SSM_ENOT_IN_CF Entry is not in configuration file.

SSM_EMMFAIL Metadata manager failure.

SSM_ECDS_CREATE_FAIL When a server was being updated in the generic configuration
file, and its CDS directory has been changed, the creation of the
new CDS directory, the creation of its Security object, and/or the
setting of the ACLs on one or both failed. However, if the System
Manager got this far, the requested entry was updated properly in
the configuration file.

SSM_ENO_SUCH_CF No such configuration file.

SSM_ECF_LIST_BAD Although the Update operation completed successfully, the
System Manager’s internal list of configuration files is corrupted.

SSM_ENULL_PTR Invalid null pointer.

SSM_EINVALID_IN Invalid input.

SSM_ESRV_NOT_FOUND Server not found.

SSM_ECANT_MALLOC Can’t malloc.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_EINVALID_OBJID Invalid object ID.

SSM_EMUTEX_FAIL Mutex failure.

See also
ssm_ConfigAdd, ssm_ConfigDelete, ssm_ConfigGetDefault, ssm_ConfigRead.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-35
Rev. 0

8.1.17. ssm_Delog

Purpose
Allow access to delog command from Sammi.

Syntax
#include "ssm_types.h"

signed32 ssm_Delog(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ClientID, /* IN */
char *InputFile, /* IN */
char *OutputFile, /* IN */
idl_long_int StartTime, /* IN */
idl_long_int EndTime, /* IN */
idl_long_int RecordTypes, /* IN */
char DescNames[SSM_MAX_DELOG_SERVERS]

 [HPSS_MAX_DESC_NAME], /* IN */
char Users[SSM_MAX_DELOG_USERS]

[HPSS_MAX_DESC_NAME], /* IN */
unsigned32 *RPCStatus); /* OUT */

Description:
The ssm_Delog function executes the HPSS delog utility. Output from the delog utility is placed
in OutputFile. The standard error from the delog program is placed in "OutputFile".err.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

ClientID Client ID; index of client in the System Manager’s list of clients

InputFile Input file (required).

OutputFile Output file (required).

StartTime Starting time.

EndTime Ending time.

RecordTypes Record types for filtering.

DescNames Descriptive names for filtering.

Users User Names for filtering.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If the delog program is terminated by a signal,
the function returns the positive value of the signal. If an error occurs, the negated error code is
returned.

Chapter 8: System Manager Functions

8-36 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

positive number Value of signal which terminated delog program.

-1 Failure from delog program.

SSM_ECANT_MALLOC Can’t malloc.

SSM_EOPEN_FAIL Can’t open file for standard error.

SSM_ESM_INTERNAL_ERROR
Fork or exec failed.

See also
None.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-37
Rev. 0

8.1.18. ssm_DriveDismount

Purpose
Dismount a drive.

Syntax
#include "ssm_types.h"

signed32 ssm_DriveDismount(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ClientID, /* IN */
unsigned32 PVLID, /* IN */
drive_t Drive, /* IN */
unsigned32 *RPCStatus); /* OUT */

Parameters
Bh RPC binding handle

Ch HPSS connection handle

ClientID Index into Client List

PVLID PVL ID

Drive Drive to be dismounted

RPCStatus RPC error code, supplied by DCE

Description:
The ssm_DriveDismount function allows an operator to force a cartridge to be dismounted from
a drive. It is provided for the operator to correct the situation in which HPSS does not, for some
reason, dismount the drive automatically.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_EINVALID_IN Invalid input.

SSM_EBIND_FAIL System manager could not bind to server.

SSM_ERPC_ERROR RPC error.

The return code from pvl_DismountDrive.

Chapter 8: System Manager Functions

8-38 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

See also
None.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-39
Rev. 0

8.1.19. ssm_FilesetCreate

Purpose
Create a DFS/HPSS or HPSS-only fileset.

Syntax
#include "ssm_types.h"

signed32 ssm_FilesetCreate (
handle_t Bh, /*IN*/
hpss_connect_handle_t *Ch, /*IN*/
unsigned32 DMGID, /*IN*/
unsigned32 ClientID, /*IN*/
SrvInfoUnion_t *InFileset, /*IN*/
SrvInfoUnion_t *OutFileset, /*OUT*/
unsigned32 *RPCStatus); /*OUT*/

Description
The ssm_FilesetCreate function is used to create DFS/HPSS and HPSS-only filesets.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

DMGID Index into Server List for the DMG to be asked to create the
fileset.

ClientID Index into the Client List.

InFileset Fileset to be created.

OutFileset Full fileset structure returned.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_ID Client is not registered.

SSM_EINVALID_IN Invalid input.

SSM_BIND_FAIL System Manager cannot bind to server.

SSM_ERPC_ERROR RPC error.

Chapter 8: System Manager Functions

8-40 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The return value from dmg_admin_FilesetCreate or hpss_FilesetCreate.

See also
ssm_FilesetDelete, dmg_admin_FilesetCreate, hpss_FilesetCreate.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-41
Rev. 0

8.1.20. ssm_FilesetDelete

Purpose
Delete a DFS/HPSS or HPSS-only fileset.

Syntax
#include "ssm_types.h"

signed32 ssm_FilesetDelete (
handle_t Bh, /*IN*/
hpss_connect_handle_t *Ch, /*IN*/
unsigned32 DMGID, /*IN*/
unsigned32 ClientID, /*IN*/
unsigned32 Type, /*IN*/
unsigned32 DeleteBoth, /*IN*/
ssm_fileset_id_t FilesetID, /*IN*/
unsigned32 *RPCStatus); /*OUT*/

Description
The ssm_FilesetDelete function is used to delete DFS/HPSS and HPSS-only filesets.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

DMGID Index into Server List for the DMG to be asked to delete the
fileset.

ClientID Index into the Client List.

Type Type of fileset. Can be;

SSM_DMG_FILESET_MO_C call dmg_admin_FilesetDelete.

SSM_NS_FILESET_MO_C call hpss_FilesetDelete.

SSM_NS_FILESET_FULL_MO_C
call hpss_FilesetDelete.

DeleteBoth Flag to delete the fileset from both DFS and HPSS.

Used only when Type is SSM_DMG_FILESET_MO_C.

See dmg_admin_FilesetDelete.

FilesetID Contains the fileset name or id to be deleted.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions

Chapter 8: System Manager Functions

8-42 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_ID Client is not registered.

SSM_EINVALID_IN Invalid input.

SSM_BIND_FAIL System Manager cannot bind to server.

SSM_ERPC_ERROR RPC error.

The return value from dmg_admin_FilesetDelete or hpss_FilesetDelete.

See also
ssm_FilesetDelete, dmg_admin_FilesetDelete, hpss_FilesetDelete.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-43
Rev. 0

8.1.21. ssm_JobCancel

Purpose
Cancel a job.

Syntax
#include "ssm_types.h"

signed32 ssm_JobCancel(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ClientID, /* IN */
unsigned32 PVLID, /* IN */
job_id_t JobID, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description:
The ssm_JobCancel function allows an operator to cancel the specified job.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

ClientID Index into Client List.

PVLID PVL ID.

JobID Job to cancel.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_EINVALID_IN Invalid input.

SSM_EBIND_FAIL System manager cannot bind to server.

SSM_ERPC_ERROR RPC error.

The return value from w_pvl_DismountJobId.

See also
None.

Chapter 8: System Manager Functions

8-44 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-45
Rev. 0

8.1.22. ssm_JunctionCreate

Purpose
Create a junction to a fileset.

Syntax
#include "ssm_types.h"

signed32 ssm_JunctionCreate (
handle_t Bh, /*IN*/
hpss_connect_handle_t *Ch, /*IN*/
unsigned32 ClientID, /*IN*/
char *Path, /*IN*/
ssm_fileset_id_t FilesetID, /*IN*/
unsigned32 *RPCStatus); /*OUT*/

Description
The ssm_JunctionCreate function is used to create a junction to an existing fileset.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

ClientID Index into the Client List.

Path Path to fileset.

FilesetID Contains the fileset name or id to be deleted.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_ID Client is not registered.

SSM_EINVALID_IN Invalid input.

SSM_BIND_FAIL System Manager cannot bind to server.

SSM_ERPC_ERROR RPC error.

The return value from hpss_FilesetGetAttributes or hpss_JunctionCreate.

See also

Chapter 8: System Manager Functions

8-46 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

ssm_JunctionDelete, hpss_JunctionCreate.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-47
Rev. 0

8.1.23. ssm_JunctionDelete

Purpose
Delete a junction to a fileset.

Syntax
#include "ssm_types.h"

signed32 ssm_JunctionDelete (
handle_t Bh, /*IN*/
hpss_connect_handle_t *Ch, /*IN*/
unsigned32 ClientID, /*IN*/
char *Path, /*IN*/
unsigned32 *RPCStatus); /*OUT*/

Description
The ssm_JunctionDelete function is used to delete a junction.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

ClientID Index into the Client List.

Path Path to fileset.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_ID Client is not registered.

SSM_EINVALID_IN Invalid input.

SSM_BIND_FAIL System Manager cannot bind to server.

SSM_ERPC_ERROR RPC error.

The return value from hpss_JunctionDelete.

See also
ssm_JunctionCreate, hpss_JunctionDelete.

Clients
SSM Data Server.

Chapter 8: System Manager Functions

8-48 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-49
Rev. 0

8.1.24. ssm_ResourceCreate

Purpose
Create resources in the Storage Server.

Syntax
#include "ssm_types.h"

signed32 ssm_ResourceCreate(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ClientID, /* IN */
unsigned32 SSID, /* IN */
SsPVInfo_t *PVData, /* IN */
SsResources_t *SSData, /* IN */
unsigned32 *NumProcessed, /* OUT */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_ResourceCreate function creates the physical volume, virtual volume, and storage
map definitions necessary to make a set of volumes accessible by the storage system.

Parameters
Bh DCE binding handle.

Ch HPSS connection handle.

ClientID Index into Client List.

SSID Storage server ID.

PVData Identifies the list of physical volumes to add. It includes:
PVName List of physical volumes.
NumPVS Number of physical volumes.

SSData Data for adding resources to Storage Server. It includes:
VVSClassID Storage Class ID.
Acct Account.
EstimatedSize PV size (for disk only).

NumProcessed Number of PV’s processed.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

Chapter 8: System Manager Functions

8-50 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_EINVALID_IN Invalid input.

HPSS_ENOMEM Memory allocation failure.

HPSS_ESYSTEM Undetermined failure.

SSM_EMUTEX_FAIL Mutex failure.

SSM_ESS_INCONSISTENT Storage server data is inconsistent (the PVs, VVs, and maps do
not coordinate properly).

The return code from ss_PVCreate, ss_VVCreate, ss_MapCreate, ss_PVGetAttrs,
ss_VVGetAttrs, ss_MapGetAttrs.

See also
ssm_ResourceDelete.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-51
Rev. 0

8.1.25. ssm_ResourceDelete

Purpose
Remove resources from the Storage Server.

Syntax
#include "ssm_types.h"

signed32 ssm_ResourceDelete(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ClientID, /* IN */
unsigned32 SSID, /* IN */
SsPVInfo_t *PVData, /* IN */
unsigned32 *NumProcessed, /* OUT */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_ResourceDelete function deletes the physical volume, virtual volume, and map
definitions which define a set of volumes to the Storage Server, thus effectively deleting those
volumes from the Storage Server.

Parameters
Bh DCE binding handle.

Ch HPSS connection handle.

ClientID Index into Client List.

SSID SS ID.

PVData Information with which to generate list of physical volumes. It
includes:

PVName List of physical volumes.
NumPVS Number of physical volumes.

NumProcessed Number of physical volumes processed.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation.

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_EINVALID_IN Invalid input.

Chapter 8: System Manager Functions

8-52 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

HPSS_ECONFLICT Inconsistent VV data.

SSM_EMUTEX_FAIL Mutex failure.

SSM_ETRANABORT Transaction aborted.

The return code from ss_VVGetAttrs, ss_MapDelete, ss_VVDelete, ss_PVDelete.

See also
ssm_ResourceCreate.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-53
Rev. 0

8.1.26. ssm_ResourceReclaim

Purpose
Reclaim resources in a storage class.

Syntax
#include "ssm_types.h"

signed32 ssm_ResourceReclaim(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ClientID, /* IN */
SsReclaim_t *ReclaimData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
Reclaims resources in a storage class. Invokes the command line reclaim program.

Parameters
Bh DCE binding handle.

Ch HPSS connection handle.

ClientID Index into Client List.

ReclaimData Information for performing the reclaim, including:
SSID Storage Server.
NumberVVs VVs to reclaim.
SClassID Storage class ID.
WorkingDirectory[] Working directory.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation..

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_EINVALID_IN Invalid input.

SSM_ECANT_MALLOC Can’t malloc.

SSM_EOPEN_FAIL Can’t open file for standard error.

SSM_ESM_INTERNAL_ERROR
Fork or exec failed.

Chapter 8: System Manager Functions

8-54 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

See also
ssm_ResourceRepack.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-55
Rev. 0

8.1.27. ssm_ResourceRepack

Purpose
Repacks resources in a storage class.

Syntax
#include "ssm_types.h"

signed32 ssm_ResourceRepack(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
unsigned32 ClientID, /* IN */
SsRepack_t *RepackData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
Repacks resources in a storage class. Invokes the command line repack program.

The SourceFile and TargetFile fields of RepackData are currently ignored.

Parameters
Bh DCE binding handle.

Ch HPSS connection handle.

ClientID Index into Client List.

RepackData Information for performing the repack, including:
SourceFile File listing VVs from which to repack.
TargetFile File listing VVs to which to repack.
SClassID Storage Class ID.
NumberVVs Number of VVs to repack.
SSID Storage Server.
Force Whether to force the repack.
Threshold Space threshold at which to quit.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. If an error occurs, the negated error code is
returned.

Error conditions
HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EACCESS The client does not have permission for this operation..

SSM_EINVALID_CLIENT_ID Invalid range for ClientID.

SSM_ECLIENT_NOT_REG Client is not registered.

SSM_EINVALID_IN Invalid input.

SSM_ECANT_MALLOC Can’t malloc.

Chapter 8: System Manager Functions

8-56 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

SSM_EOPEN_FAIL Can’t open file for standard error.

SSM_ESM_INTERNAL_ERROR
Fork or exec failed.

See also
ssm_ResourceReclaim.

Clients
SSM Data Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_client_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-57
Rev. 0

8.2. APIs Available to the Other HPSS Subsystems

The System Manager supplies an interface by which HPSS servers may notify it of significant
events.

The Logging Subsystem forwards alarms, events, and status messages issued by the servers to
the System Manager via the ssm_LogMsgNotify API. The PVR notifies the System Manager of
pending tape mounts and tape mount completions by means of the ssm_MountNotify API.

The remaining APIs supported by this interface allow servers to forward notifications of changes in
the attributes of a managed object.

Chapter 8: System Manager Functions

8-58 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.2.1. ssm_BitfileNotify

Purpose
Receive notifications of changes to bitfile managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_BitfileNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
bfMO_attrib_t *BitfileData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_BitfileNotify function receives notifications of changes to a bitfile managed object and
passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

BitfileData Latest copy of the complete bitfile managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-59
Rev. 0

None.

Clients
Bitfile Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-60 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.2.2. ssm_CartNotify

Purpose
Receive notifications of changes to cartridge managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_CartNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
cart_data_t *CartData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_CartNotify function receives notifications of changes to a cartridge managed object and
passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

CartData Latest copy of the complete cartridge managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-61
Rev. 0

None.

Clients
Physical Volume Repository.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-62 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.2.3. ssm_DeviceNotify

Purpose
Receive notifications of changes to device managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_DeviceNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
devdesc_attr_t *DeviceData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_DeviceNotify function receives notifications of changes to a device managed object
and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

DeviceData Latest copy of the complete device managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-63
Rev. 0

None.

Clients
Mover.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-64 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.2.4. ssm_DMGFilesetNotify

Purpose
Receive notifications from a DMAP Gateway about fileset modifications.

Syntax
#include "ssm_types.h"

signed32 ssm_DMGFilesetNotify (
handle_t Bh, /*IN*/
hpss_connect_handle_t *Ch, /*IN*/
uuid_t *SubsystemID, /*IN*/
u_signed64 SelectBitmap, /*IN*/
dmg_fileset_attr_t *FilesetData, /*IN*/
unsigned32 *RPCStatus); /*OUT*/

Description
The ssm_DMGFilesetNotify function receives notifications of changes to a fileset managed
object and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

FilesetData Latest copy of the complete fileset managed object.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-65
Rev. 0

None.

Clients
DMAP Gateway

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-66 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.2.5. ssm_DMGNotify

Purpose
Receive notifications of changes to DMAP Gateway managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_DMGNotify (
handle_t Bh, /*IN*/
hpss_connect_handle_t *Ch, /*IN*/
uuid_t *SubsystemID, /*IN*/
u_signed64 SelectBitmap, /*IN*/
dmg_SpecificData_t *DMGData, /*IN*/
unsigned32 *RPCStatus); /*OUT*/

Description
The ssm_DMGFilesetNotify function receives notifications of changes to a DMAP Gateway
managed object and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

DMGData Latest copy of the complete DMAP Gateway managed object.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-67
Rev. 0

None.

Clients
DMAP Gateway

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-68 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.2.6. ssm_DriveNotify

Purpose
Receive notifications of changes to drive managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_DriveNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
drive_data_t *DriveData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_DriveNotify function receives notifications of changes to a drive managed object and
passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

DriveData Latest copy of the complete drive managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-69
Rev. 0

None.

Clients
Physical Volume Library.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-70 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.2.7. ssm_LogFileNotify

Purpose
Receive notifications of changes to logfile managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_LogFileNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
LogFileAttr_t *LogFileData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_LogFileNotify function receives notifications of changes to a logfile managed object
and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

LogFileData Latest copy of the complete logfile managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-71
Rev. 0

None.

Clients
Log Daemon.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

8-72 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.2.8. ssm_LogMsgNotify

Purpose
Receive alarms, events, and status messages.

Syntax
#include "ssm_types.h"

signed32 ssm_LogMsgNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t SubsystemID, /* IN */
log_msg_t *LogMsgData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_LogMsgNotify function receives alarms, events, and status messages which HPSS
servers have sent to the logging subsystem. It passes them on to all Data Servers who are
currently checked in.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

LogMsgData An alarm, event, or status message.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to allocate the space to queue the log message.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECANT_MALLOC Can’t malloc.

See also
None.

Clients
Logging Client.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-73
Rev. 0

8.2.9. ssm_LSStatsNotify

Purpose
Receive notifications of changes to Location Server statistics managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_LSStatsNotify (
handle_t Bh, /*IN*/
hpss_connect_handle_t *Ch, /*IN*/
uuid_t *SubsystemID, /*IN*/
u_signed64 SelectBitmap, /*IN*/
ls_server_stats_t *StatsData, /*IN*/
unsigned32 *RPCStatus); /*OUT*/

Description
The ssm_LSStatsNotify function receives notifications of changes to a Location Server statistics
managed object and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

StatsData Latest copy of the complete Location Server statistics managed
object.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

Chapter 8: System Manager Functions

8-74 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

See also
None.

Clients
Location Server

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-75
Rev. 0

8.2.10. ssm_MPSNotify

Purpose
Receive notifications of changes to MPS managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_MPSNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
mps_attrib_t *MPSData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_MPSNotify function receives notifications of changes to a MPS managed object and
passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

MPSData Latest copy of the complete MPS managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

8-76 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Clients
MPS.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-77
Rev. 0

8.2.11. ssm_MPS_SClassNotify

Purpose
Receive notifications of changes to storage class managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_MPS_SClassNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
mps_sclass_attrs_t *SClassData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_MPS_SClassNotify function receives notifications of changes to a storage class
managed object and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

SClassData Latest copy of the complete storage class managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

8-78 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Clients
MPS.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-79
Rev. 0

8.2.12. ssm_MVRNotify

Purpose
Receive notifications of changes to Mover managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_MVRNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
mover_attr_t *MVRData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_MVRNotify function receives notifications of changes to a Mover managed object and
passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

MVRData Latest copy of the complete Mover managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

8-80 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Clients
Mover.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-81
Rev. 0

8.2.13. ssm_MapNotify

Purpose
Receive notifications of changes to storage map managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_MapNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
ss_map_attr_t *MapData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_MapNotify function receives notifications of changes to a storage map managed object
and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

MapData Latest copy of the complete storage map managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

8-82 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Clients
Storage Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-83
Rev. 0

8.2.14. ssm_MountNotify

Purpose
Receive notifications of pending or completed mounts.

Syntax
signed32 ssm_MountNotify(

handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *PVRID, /* IN */
cart_t *Cart, /* IN */
side_t *Side, /* IN */
drive_addr_t *Drive, /* IN */
unsigned32 RequestType, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_MountNotify function receives notifications that a tape mount has been requested or
completed. It passes the notification on to all Data Server processes which are currently checked
in.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

PVRID PVR ID.

Cart Cartridge ID.

Side Side; null if the cartridge has only one side.

Drive Drive; null if no specific drive is requested.

RequestType Request type (mount requested or mount completed).

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EINVALID_IN Invalid input.

SSM_ESRV_NOT_FOUND Server not found.

See also
None.

Clients

Chapter 8: System Manager Functions

8-84 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Physical Volume Repository.

Notes
None.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-85
Rev. 0

8.2.15. ssm_NFS2_StatsNotify

Purpose
Receive notifications of changes to NFS statistics managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_NFS2_StatsNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
nfs2_stats_t *StatsData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_NFS2_StatsNotify function receives notifications of changes to a NFS statistics
managed object and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

StatsData Latest copy of the complete NFS statistics managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

Chapter 8: System Manager Functions

8-86 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also
None.

Clients
NFS Daemon.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-87
Rev. 0

8.2.16. ssm_NSFilesetNotify

Purpose
Receive notifications of changes to Name Server fileset managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_NSFilesetNotify (
handle_t Bh, /*IN*/
hpss_connect_handle_t *Ch, /*IN*/
uuid_t *SubsystemID, /*IN*/
u_signed64 SelectBitmap, /*IN*/
ns_FilesetAttrs_t *FilesetData, /*IN*/
unsigned32 *RPCStatus); /*OUT*/

Description
The ssm_NSFilesetNotify function receives notifications of changes to a Name Server fileset
managed object and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

FilesetData Latest copy of the complete Name Server fileset managed
object.

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

Chapter 8: System Manager Functions

8-88 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

See also
None.

Clients
Name Server

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-89
Rev. 0

8.2.17. ssm_NSNotify

Purpose
Receive notifications of changes to Name Server managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_NSNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
ns_SpecificConfig_t *NSData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_NSNotify function receives notifications of changes to a Name Server managed object
and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

NSData Latest copy of the complete Name Server managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

8-90 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Clients
Name Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-91
Rev. 0

8.2.18. ssm_PVLNotify

Purpose
Receive notifications of changes to PVL managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_PVLNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
pvl_data_t *PVLData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_PVLNotify function receives notifications of changes to a PVL managed object and
passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

PVLData Latest copy of the complete PVL managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

8-92 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Clients
Physical Volume Library.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-93
Rev. 0

8.2.19. ssm_PVNotify

Purpose
Receive notifications of changes to Storage Server physical volume managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_PVNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
pv_attr_t *PVData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_PVNotify function receives notifications of changes to a physical volume managed
object and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

PVData Latest copy of the complete physical volume managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

8-94 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Clients
Storage Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-95
Rev. 0

8.2.20. ssm_PVRNotify

Purpose
Receive notifications of changes to PVR managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_PVRNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
pvr_data_t *PVRData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_PVRNotify function receives notifications of changes to a PVR managed object and
passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

PVRData Latest copy of the complete PVR managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

8-96 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Clients
Physical Volume Repository.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-97
Rev. 0

8.2.21. ssm_QueueNotify

Purpose
Receive notifications of changes to PVL queue managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_QueueNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
api_queue_data_t *QueueData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_QueueNotify function receives notifications of changes to a PVL queue managed
object and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

QueueData Latest copy of the complete PVL queue managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

8-98 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Clients
Physical Volume Library.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-99
Rev. 0

8.2.22. ssm_RequestNotify

Purpose
Receive notifications of changes to PVL request managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_RequestNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
request_data_t *RequestData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_RequestNotify function receives notifications of changes to a PVL request managed
object and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

RequestData Latest copy of the complete PVL request managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

8-100 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Clients
Physical Volume Library.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-101
Rev. 0

8.2.23. ssm_SFSNotify

Purpose
Receive notifications of changes to SFS managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_SFSNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
sfs_attrs_t *SFSData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_SFSNotify function receives notifications of changes to the SFS managed object and
passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

SFSData Latest copy of the complete SFS managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

8-102 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Clients
Metadata Monitor.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-103
Rev. 0

8.2.24. ssm_SSNotify

Purpose
Receive notifications of changes to storage segment managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_SSNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
ss_attr_t *SSData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_SSNotify function receives notifications of changes to a storage segment managed
object and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

SSData Latest copy of the complete storage segment managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

8-104 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Clients
Storage Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-105
Rev. 0

8.2.25. ssm_ServerNotify

Purpose
Receive notifications of changes to server managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_ServerNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
hpss_server_attrib_t *ServerData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_ServerNotify function receives notifications of changes to a server managed object and
passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

ServerData Latest copy of the complete server managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

8-106 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Clients
Bitfile Server, Logging Client, Logging Daemon, Metadata Monitor, MPS, Mover, Mount Daemon,
NFS Daemon, Name Server, Physical Volume Library, Physical Volume Repository, Storage
Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-107
Rev. 0

8.2.26. ssm_SsrvNotify

Purpose
Receive notifications of changes to Storage Server managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_SsrvNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
ssrv_attr_t *SsrvData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_SsrvNotify function receives notifications of changes to a Storage Server managed
object and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

SsrvData Latest copy of the complete Storage Server managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

8-108 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Clients
Storage Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-109
Rev. 0

8.2.27. ssm_TapeCheckInNotify

Purpose
Receive notifications of tape check-in requests from the PVR.

Syntax
signed32 ssm_TapeCheckInNotify(

handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *PVRID, /* IN */
cart_t *Cart, /* IN */
side_t *Side, /* IN */
ioport_addr_t *IOPort, /* IN */
unsigned32 RequestType, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_TapeCheckInNotify function receives notifications that a tape check-in has been
requested. It passes the notification on to all Data Server processes which are currently checked
in.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

PVRID PVR ID.

Cart Cartridge ID.

Side Side; null if the cartridge has only one side.

IOPort I/O Port where the cartridge is to be inserted.

RequestType Request type (insert cartridge or cartridge has been inserted).

RPCStatus RPC error code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_EINVALID_IN Invalid input.

SSM_ESRV_NOT_FOUND Server not found.

See also
None.

Chapter 8: System Manager Functions

8-110 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Clients
Physical Volume Repository.

Notes
None.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-111
Rev. 0

8.2.27. ssm_VVNotify

Purpose
Receive notifications of changes to virtual volume managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_VVNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
vv_attr_t *VVData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_VVNotify function receives notifications of changes to a virtual volume managed object
and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

VVData Latest copy of the complete virtual volume managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

8-112 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Clients
Storage Server.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-113
Rev. 0

8.2.28. ssm_VolNotify

Purpose
Receive notifications of changes to PVL volume managed object.

Syntax
#include "ssm_types.h"

signed32 ssm_VolNotify(
handle_t Bh, /* IN */
hpss_connect_handle_t *Ch, /* IN */
uuid_t *SubsystemID, /* IN */
u_signed64 SelectBitmap, /* IN */
vol_data_t *VolData, /* IN */
unsigned32 *RPCStatus); /* OUT */

Description
The ssm_VolNotify function receives notifications of changes to a PVL volume managed object
and passes them on to Data Servers who are registered to receive them.

Parameters
Bh RPC binding handle.

Ch HPSS connection handle.

SubsystemID UUID of the server sending the notification.

SelectBitmap Bitmap showing which attributes of the managed object have
changed.

VolData Latest copy of the complete PVL volume managed object.

RPCStatus RPC return code, supplied by DCE.

Return values
Upon successful completion the function returns 0. Errors indicate either a bad connection or an
internal failure of the System Manager to lock or access its table of registered managed objects.

Error conditions
HPSS_EBADCONN Bad connection handle.

HPSS_ENOTREADY The System Manager has not yet initialized.

SSM_ECONDITION_FAIL Condition variable failure.

SSM_ECONDITION_TIMEOUT
Condition variable time-out.

SSM_EMUTEX_FAIL Mutex failure.

SSM_EINVALID_IN Invalid SubsystemID.

SSM_ESRV_NOT_FOUND Server with SubsystemID not found.

See also

Chapter 8: System Manager Functions

8-114 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

None.

Clients
Physical Volume Library.

Notes
The RPCStatus parameter is optional. If it is used, it must be declared for the function in an
ssm_server_if.acf file private to the calling application.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-115
Rev. 0

8.3. Data Definitions

8.3.1. Data Common to the System Manager and the Data Server

8.3.1.1. Significant constants

SSM_MAX_CLIENT The maximum number of clients who may check in concurrently.

SSM_NEW_CLIENT This constant is passed as the input client ID by the Data Server at its
first check-in. It must be equal to SSM_MAX_CLIENTS.

SSM_SEC_SERVER_ID The "server ID" of the security services. This is a convenient way to
request information about the security service without actually
pretending it is a "server". It must always be greater than
SSM_MAX_SERVERS.

SSM_SSM_CLIENT_ID This is a convenient way to let SSM be a "client" to itself. It is set to
something greater than SSM_MAX_CLIENTS.

LIST STATUS VALUES The various lists shared by the System Manager and Data Server
may have statuses with the following values:

SSM_VALID The list is valid.

SSM_INVALID There is some inconsistency in the list.

SSM_MMFAIL There was an error opening or reading the metadata for one
or more entries.

8.3.1.2. Server List - ServerList_t

Description

The Server List is a list of the servers defined in the HPSS Server Configuration File. The System
Manager builds the list at startup time and modifies it whenever a server is added, deleted, or updated.

The index of a server in the Server List is its primary means of identification for the System Manager and
Data Server. The System Manager and Data Server call this index the "Server ID". We are aware that
most of HPSS uses the term "Server ID" to mean the server’s uuid, but the term has stuck, anyway. We
try to specify "Server UUID" whenever we are talking about the uuid.

Slots in the Server List are never reused during one instantiation of the System Manager. If a server is
removed from the HPSS Server Configuration File, its SSM_SVRFLAG_INUSE Flag bit is cleared. This is
because SSM relies so heavily on the Server ID to identify the server and the windows which may be open
for it. If the System Manager is restarted, the servers will be reordered without any holes in the list. The
"ID" column in the Server List Window specifies the Server ID.

Format

typedef struct ServerStruct {
unsigned32 Flags;
unsigned32 Type;
unsigned32 Subtype;
unsigned32 Opstate;
[string] char DescName[HPSS_MAX_DESC_NAME];
[string] char Host[HPSS_MAX_HOST_NAME];

Chapter 8: System Manager Functions

8-116 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

[string] char HpssdName[HPSS_MAX_HOST_NAME};
uuid_t UUID;

} ServerStruct_t;

Flags

Indicates characteristics and states of server.

Type

Server type.

Subtype

Server subtype.

OpState

Server operational state.

DescName

Server descriptive name.

Host

Server host on which the server is executing.

HpssdName

The hostname of the startup daemon that controls this server.

UUID

Server UUID.

typedef struct ServerList {
unsigned32 Size;
unsigned32 Max;
unsigned32 ChunkSize;
unsigned32 Status;
unsigned32 Version;
timestamp_t CreateTime;
timestamp_t UpdateTime;
[size_is(Size)] ServerStruct_t List[*];

} ServerList_t;

Size

Number of servers in the list.

Max

Maximum number of servers in the list.

ChunkSize

Number of servers to add to the list when the current list becomes full.

Status

List status.

Version

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-117
Rev. 0

Changes when the list changes.

CreateTime

Time that the list was first created.

UpdateTime

Time that the list was last updated.

List

List of servers.

Valid values for Flags:

SSM_SVRFLAG_INUSE A server has been assigned to this slot in the Server
List.

SSM_SVRFLAG_UP The server has been confirmed to be up.

SSM_SVRFLAG_DOWN The server has been confirmed to be down.

SSM_SVRFLAG_CONNECTED The System Manager is currently connected to the
server.

SSM_SVRFLAG_STARTABLE The server can be started by the System Manager via
the startup daemon. The servers which are not
STARTABLE are the System Manager itself and the
startup daemon, which must be started manually.

SSM_SVRFLAG_EXEC The EXECUTE_SERVER_FLAG for this server in the
General Server Configuration file is ON.

SSM_SVRFLAG_ADMIN The server has a server managed object and allows
SSM to set its Administrative State.

SSM_SVRFLAG_SNOOTY The server has no DCE interface to SSM. This flag is
losing its usefulness as we no longer keep SNOOTY
servers, such as ftpd or pfsd, in the Server
Configuration file.

SSM_SVRFLAG_DELETED The server has been deleted from the General Server
Configuration file. It may or may not still be
executing.

SSM_SVRFLAG_EAUTH SSM is not authorized to connect to the server. If
neither the UP nor the DOWN flag is set, it means that
we can’t connect to the server but we can’t talk to his
startup demon, either, so we don’t know for certain
whether he is up or not. The Data Server will display
a Status of INDETERMINATE for such servers. The
UP and DOWN flags should never both be set at the
same time.

SSM_SVRFLAG_CONFIG The SM has determined that there is some type of a
configuration problem with the server. This normally
means that an SFS file that is referenced can not be

Chapter 8: System Manager Functions

8-118 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

found or that an entry in an SFS file is non-existant. The
Data Server will display a Status of CHECK CONFIG for
these servers.

The previous states are set only by the System Manager. The following values may be set by either the
System Manager or the Data Server, but the System Manager may override any state set by the Data
Server. They are considered transient states.

SSM_SVRFLAG_STARTING SSM is trying to start the server.

SSM_SVRFLAG_STOPPING SSM is trying to shut down the server.

SSM_SVRFLAG_HALTING SSM is trying to halt the server.

SSM_SVRFLAG_REINITING SSM is trying to reinitialize the server.

SSM_SVRFLAG_REPAIRING SSM is trying to repair the server.

SSM_SVRFLAG_CONNECTING SSM is trying to connect to the server.

The following states are set only by the Data Server for its private use.

SSM_SVRFLAG_CLIENT1

SSM_SVRFLAG_CLIENT2

Valid values for Status:

The list status values SSM_VALID, SSM_INVALID and SSM_MMFAIL may all be applied to the Server
List. In addition, the Server List Status may be:

SSM_EXPECTED_NOT_FOUND There was no entry of type ssm in the server
configuration file which had a descriptive name matching
the value of the HPSS_DESC_SSMSM environment
variable. The System Manager will make up an
appropriate entry for the server list and try to add it to the
server configuration file.

SSM_ADDED_SSM The SSM_EXPECTED_NOT_FOUND condition is true,
and the System Manager was successful in adding its
made-up entry to the server configuration file.

SSM_UNEXPECTED_FOUND There were one or more entries of type ssm in the server
configuration file which had a descriptive name which did
not match the HPSS_DESC_SSMSM environment
variable.

SSM_CDS_WRONG There was an entry of type ssm in the server
configuration file which had a descriptive name which
matched the value of the HPSS_DESC_SSMSM
environment variable, but its ServerName field did not
match the value of the HPSS_CDS_SSMSM
environment variable.

Clients

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-119
Rev. 0

The System Manager passes the Server List to the Data Server at check-in. The System Manager sends
the Data Server a new copy of the Server List in a notification whenever the list changes. Since the
Server List can change so often, a special thread monitors it and sends the Data Server a new copy only
at periodic (very small) intervals, rather than every single time the list changes.

8.3.1.3. Drive List - DriveList_t

Description

The Drive List is constructed by the System Manager at startup and updated whenever a drive is added or
deleted from the PVL Drive Configuration File and the Mover Device Configuration File.

Format

typedef struct DriveStruct {
unsigned32 DeviceID;
unsigned32 Flags;
[string] char MvrDeviceName[MVR_MAXDEVNAME];
unsigned32 MvrID;
[string] char MvrHost[HPSS_MAX_HOST_NAME];
drive_addr_t PvlDriveAddress;
unsigned32 PvlID;
unsigned32 PvrID;

} DriveStruct_t;

DeviceID

Common device/drive ID.

Flags

Characteristics and states of drive.

MvrDeviceName

Mover device name.

MvrID

Index of Mover in Server List.

PvlDriveAddress

PVL drive address.

PvlID

Index of PVL in Server List.

PvrID

Index of PVR in Server List.

typedef struct DriveList {
unsigned32 Size;
unsigned32 Max;
unsigned32 ChunkSize;
unsigned32 Status;
unsigned32 Version;
[size_is(Size)] DriveStruct_t List[*];

} DriveList_t;

Size

Chapter 8: System Manager Functions

8-120 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Number of device/drives in list.

Max

Maximum number of device/drives in list.

ChunkSize

Number of device/drives to add to the list when the current list becomes full..

Status

List status.

Version

Changes when list changes.

List

List of drives.

Valid values for Flags:

SSM_DRIVELIST_NODEV There is no corresponding device for a
defined drive.

SSM_DRIVELIST_NODRIVE There is no corresponding drive for a defined
device.

SSM_DRIVELIST_BAD_MVR_UUID_DEV There is an unknown Mover uuid in a device
file.

SSM_DRIVELIST_BAD_MVR_UUID_DRV There is an unknown Mover uuid in the drive
file.

SSM_DRIVELIST_BAD_PVR_UUID There is an unknown PVR uuid for a drive.

SSM_DRIVELIST_MVR_MISMATCH The Mover specified for a device in the
device file is not same as the Mover
specified for the same device in the drive file.

Clients

The Drive List is passed to the Data Server at check-in to enable the Data Server to construct selection
lists on drives and provide the proper identifying information on drives in subsequent configuration calls.
The System Manager sends the Data Server a new copy of the Drive List in a notification whenever the list
changes.

8.3.1.4 Class of Service List - COSList_t

Description

The Class of Service List is a list of classes of service defined in the COS Configuration File. The System
Manager builds the list at startup time and modifies it whenever a class of service is added, deleted, or
updated.

Format

typedef struct COSStruct {
cos_t ID;

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-121
Rev. 0

[string] char Name[HPSS_MAX_COS_NAME];
} COSStruct_t;

ID

Class of Service ID.

Name

Class of Service name.

typedef struct COSList {
unsigned32 Size;
unsigned32 Status;
unsigned32 Version;
[size_is(Size)] COSStruct_t List[*];

} COSList_t;

Size

Number of entries defined in the list.

Status

List status.

Version

Changes when the list changes.

List

List of entries.

Clients

The System Manager passes the Class of Service List to the Data Server at check-in so that the Data
Server can build a selection list for classes of service. The System Manager sends the Data Server a new
copy of the Class of Service List in a notification whenever the list changes.

8.3.1.5. Storage Class List - SClassList_t

Description

The Storage Class List is a list of classes of service defined in the Storage Class Configuration File. The
System Manager builds the list at startup time and modifies it whenever a storage class is added, deleted,
or updated.

Format

typedef struct SClassList {
unsigned32 Size;
unsigned32 Status;
unsigned32 Version;
[size_is(Size)] hpss_sclass_md_t List[*];

} SClassList_t;

Size

Number of entries defined in the list.

Status

List status.

Chapter 8: System Manager Functions

8-122 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Version

Changes when the list changes.

List

List of entries.

Clients

The System Manager passes the Storage Class List to the Data Server at check-in so that the Data
Server can build a selection list for storage classes and manage the storage class list window. The
System Manager sends the Data Server a new copy of the Storage Class List in a notification whenever
the list changes.

8.3.1.6. Hierarchy List - HierList_t

Description

The Hierarchy List is a list of hierarchies defined in the Hierarchy Configuration File. The System Manager
builds the list at startup time and modifies it whenever a hierarchy is added, deleted, or updated.

Format

typedef struct HierStruct {
unsigned32 ID;
[string]char Name[HPSS_MAX_OBJECT_NAME];

} HierStruct_t;

ID

Hierarchy ID.

Name

Hierarchy name.

typedef struct HierList {
unsigned32 Size;
unsigned32 Status;
unsigned32 Version;
[size_is(Size)] HierStruct_t List[*];

} HierList_t;

Size

Number of entries defined in the list.

Status

List status.

Version

Changes when the list changes.

List

List of entries.

Clients

The System Manager passes the Hierarchy List to the Data Server at check-in so that the Data Server can

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-123
Rev. 0

build a selection list for hierarchies. The System Manager sends the Data Server a new copy of the
Hierarchy List in a notification whenever the list changes.

8.3.1.7. Migration Policy List - MigrPList_t

Description

The Migration Policy List is a list of migration policies defined in the Migration Policy Configuration File.
The System Manager builds the list at startup time and modifies it whenever a migration policy is added,
deleted, or updated.

Format

typedef struct MigrPStruct {
unsigned32 ID;
[string] char Name[HPSS_MAX_OBJECT_NAME];

} MigrPStruct_t;

ID

Migration Policy ID.

Name

Migration Policy name.

typedef struct MigrPList {
unsigned32 Size;
unsigned32 Status;
unsigned32 Version;
[size_is(Size)] MigrPStruct_t List[*];

} MigrPList_t;

Size

Number of entries defined in the list.

Status

List status.

Version

Changes when the list changes.

List

List of entries.

Clients

The System Manager passes the Migration Policy List to the Data Server at check-in so that the Data
Server can build a selection list for classes of service. The System Manager sends the Data Server a new
copy of the Migration Policy List in a notification whenever the list changes.

8.3.1.8. Purge Policy List - PurgPList_t

Description

The Purge Policy List is a list of purge policies defined in the Purge Policy Configuration File. The System
Manager builds the list at startup time and modifies it whenever a purge policy is added, deleted, or

Chapter 8: System Manager Functions

8-124 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

updated.

Format

typedef struct PurgPStruct {
unsigned32 ID;
[string] char Name[HPSS_MAX_OBJECT_NAME];

} PurgPStruct_t;

ID

Purge Policy ID.

Name

Purge Policy name.

typedef struct PurgPList {
unsigned32 Size;
unsigned32 Status;
unsigned32 Version;
[size_is(Size)] PurgPStruct_t List[*];

} PurgPList_t;

Size

Number of entries defined in the list.

Status

List status.

Version

Changes when the list changes.

List

List of entries.

Clients

The System Manager passes the Purge Policy List to the Data Server at check-in so that the Data Server
can build a selection list for purge policies. The System Manager sends the Data Server a new copy of
the Purge Policy List in a notification whenever the list changes.

8.3.1.9. Notification Structure - NotifyUnion_t

The notifications sent by the System Manager to the Data Server use the Client Notification Structure
NotifyUnion_t, which is defined in the Other Data Definitions (Data Server Clients) section later in this
chapter.

8.3.1.10. Server Info Data Structure - SrvInfoUnion_t

Description

The Server Info Data structure is a union of all data types passed between the System Manager and Data
Server for managed objects, configuration file entries, and object ids.

Format

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-125
Rev. 0

The pointer default class is type full.

typedef union switch(CFClass_enum_t SrvInfoClass) SrvInfoData {

case SSM_INVALID_MO_C: unsigned32 *InvalidMO;
case SSM_ALL_FILE_MO_C: ssm_fileattr_t *AllFileMO;
case SSM_ALL_SERVER_MO_C: hpss_server_attrib_t *AllServerMO;
case SSM_BFS_BITFILE_MO_C: bfMO_attrib_t *BfsBitfileMO;
case SSM_DMG_DMG_MO_C: dmg_SpecificData_t *DmgDmgMO;
case SSM_DMG_FILESET_MO_C: dmg_fileset_attr_t *DmgFilesetMO;
case SSM_DMG_FILESET_FULL_MO_C: ssm_dmg_fileset_t *DmgFilesetFullMO;
case SSM_DMG_FILESET_LIST_MO_C: dmg_FSConfArray_t *DmgFilesetListMO;
case SSM_HDM_FILESET_MO_C: dmg_hdm_ex_fileset_info_t *HdmFilesetMO;
case SSM_LOGD_LOGFILE_MO_C: LogFileAttr_t *LogdLogfileMO;
case SSM_LS_STATS_MO_C: ls_server_stats_t *LsStatsMO;
case SSM_MM_SFS_MO_C: sfs_attrs_t *MmSfsMO;
case SSM_MPS_MPS_MO_C: mps_attrib_t *MpsMpsMO;
case SSM_MPS_SCLASS_MO_C: mps_sclass_attrs_t *MpsSClassMO;
case SSM_MPS_SCLASS_ALL_MO_C: mps_sclass_attr_array_t *MpsSClassAllMO;
case SSM_MVR_DEVICE_MO_C: devdesc_attr_t *MvrDeviceMO;
case SSM_MVR_MVR_MO_C: mover_attr_t *MvrMvrMO;
case SSM_NFS2_STATS_MO_C: nfs2_stats_t *Nfs2StatsMO;
case SSM_NS_NS_MO_C: ns_SpecificConfig_t *NsNsMO;
case SSM_NS_FILESET_MO_C: ns_FilesetAttrs_t *NsFilesetMO;
case SSM_NS_FILESET_FULL_MO_C: ssm_ns_fileset_t *NsFilesetFullMO;
case SSM_PVL_DRIVE_MO_C: drive_data_t *PvlDriveMO;
case SSM_PVL_PVL_MO_C: pvl_data_t *PvlPvlMO;
case SSM_PVL_QUEUE_MO_C: api_queue_data_t *PvlQueueMO;
case SSM_PVL_REQUEST_MO_C: request_data_t *PvlRequestMO;
case SSM_PVL_VOL_MO_C: vol_data_t *PvlVolMO;
case SSM_PVR_CART_MO_C: cart_data_t *PvrCartMO;
case SSM_PVR_PVR_MO_C: pvr_data_t *PvrPvrMO;
case SSM_SS_MAP_MO_C: ss_map_attr_t *SsMapMO;
case SSM_SS_PV_MO_C: pv_attr_t *SsPvMO;
case SSM_SS_SS_MO_C: ss_attr_t *SsSsMO;
case SSM_SS_SSRV_MO_C: ssrv_attr_t *SsSsrvMO;
case SSM_SS_VV_MO_C: vv_attr_t *SsVvMO;

case SSM_ALL_ACCT_CF_C: acct_config_t *AllAcctCF;
case SSM_ALL_COS_CF_C: hpss_cos_md_t *AllCosCF;
case SSM_ALL_DEV_DRIVE_CF_C: DriveData_t *AllDevDriveCF;
case SSM_ALL_FILE_FAMILY_CF_C: hpss_file_family_md_t *AllFileFamilyCF;
case SSM_ALL_HIER_CF_C: hpss_hier_md_t *AllHierCF;
case SSM_ALL_LS_CF_C: ls_policy_md_t *AllLsCF;
case SSM_ALL_REMOTE_SITE_CF_C: hpss_site_md_t *AllRemoteSiteCF;
case SSM_ALL_MIGR_POLICY_CF_C: hpss_migr_policy_md_t *AllMigrPolicyCF;
case SSM_ALL_PURG_POLICY_CF_C: hpss_purge_policy_md_t *AllPurgPolicyCF;
case SSM_ALL_SCLASS_CF_C: hpss_sclass_md_t *AllSClassCF;
case SSM_ALL_SERVER_CF_C: hpss_server_config_t *AllServerCF;
case SSM_BFS_BFS_CF_C: bfs_config_info_t *BfsBfsCF;
case SSM_BFS_BFSEGDISK_CF_C: bf_disk_segment_md_t *BfsBfsegdiskCF;
case SSM_BFS_BFSEGTAPE_CF_C: bf_tape_segment_md_t *BfsBfsegtapeCF;
case SSM_BFS_BITFILE_CF_C: bf_descriptor_md_t *BfsBitfileCF;
case SSM_DMG_DMG_CF_C: dmg_gateway_config_t *DmgDmgCF;
case SSM_DMG_FILESET_CF_C: dmg_fileset_info_t *DmgFilesetCF;
case SSM_LOGC_LOGC_CF_C: LogcConfig_t *LogcLogcCF;
case SSM_LOGC_POLICY_CF_C: LogPolicy_t *LogcPolicyCF;
case SSM_LOGD_LOGD_CF_C: LogdConfig_t *LogdLogdCF;
case SSM_MM_MM_CF_C: mm_mon_config_t *MmMmCF;
case SSM_MNT1_MNT1_CF_C: mountd_config_t *Mnt1Mnt1CF;
case SSM_MPS_MPS_CF_C: mps_config_t *MpsMpsCF;
case SSM_MVR_DEVICE_CF_C: device_desc_md_t *MvrDeviceCF;
case SSM_MVR_MVR_CF_C: mvr_config_t *MvrMvrCF;
case SSM_NFS2_NFS2_CF_C: nfs2_config_t *Nfs2Nfs2CF;
case SSM_NS_NS_CF_C: ns_SpecificConfig_t *NsNsCF;

Chapter 8: System Manager Functions

8-126 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

case SSM_PVL_DRIVE_CF_C: drive_data_t *PvlDriveCF;
case SSM_PVL_PVL_CF_C: pvl_data_t *PvlPvlCF;
case SSM_PVL_VOL_CF_C: vol_data_t *PvlVolCF;
case SSM_PVR_CART_CF_C: cart_data_t *PvrCartCF;
case SSM_PVR_PVR_CF_C: pvr_data_t *PvrPvrCF;
case SSM_SS_MAP_CF_C: storage_map_md_t *SsMapCF;
case SSM_SS_PV_CF_C: physical_volume_md_t *SsPvCF;
case SSM_SS_SS_CF_C: storage_segment_md_t *SsSsCF;
case SSM_SS_SSRV_CF_C: ssrv_attr_t *SsSsrvCF;
case SSM_SS_VV_CF_C: virtual_volume_md_t *SsVvCF;

case SSM_ALL_ACCT_ID_C: acct_rec_t *AllAcctID;
case SSM_ALL_COS_ID_C: unsigned32 *AllCosID;
case SSM_ALL_DESCNAME_C: ssm_descname_t *AllDescNameID;
case SSM_ALL_DEV_DRIVE_ID_C: DriveDataID_t *AllDevDriveID;
case SSM_ALL_FILE_FAMILY_ID_C: unsigned32 *AllFileFamilyID;
case SSM_ALL_FILE_ID_C: ssm_file_id_t *AllFileID;
case SSM_ALL_FILESET_ID_C: u_signed64 *AllFilesetID
case SSM_ALL_FILESET_NAME_ID_C: ssm_fileset_name_t *AllFilesetNameID;
case SSM_ALL_FILESET_OBJ_ID_C: ns_ObjHandle_t *AllFilesetObjID;
case SSM_ALL_HIER_ID_C: unsigned32 *AllHierID;
case SSM_ALL_MIGR_POLICY_ID_C: unsigned32 *AllMigrPolicyID;
case SSM_ALL_PURG_POLICY_ID_C: unsigned32 *AllPurgPolicyID;
case SSM_ALL_REMOTE_SITE_ID_C: uuid_t *AllRemoteSiteID;
case SSM_ALL_SCLASS_ID_C: unsigned32 *AllSClassID;
case SSM_ALL_SERVER_ID_C: uuid_t *AllServerID;
case SSM_BFS_BITFILE_ID_C: hpssoid_t *BfsBitfileID;
case SSM_BFS_BITFILE_REG_ID_C: ssm_bitfile_reg_id_t *BfsBitfileRegID;
case SSM_HDM_FILESET_ID_C: ssm_hdm_fileset_id_t *HdmFilesetID;
case SSM_LOGD_LOGFILE_ID_C: ssm_logfile_t *LogdLogfileID;
case SSM_MPS_SCLASS_ID_C: unsigned32 *MpsSClassID;
case SSM_MVR_DEVICE_ID_C: unsigned32 *MvrDeviceID;
case SSM_PVL_DRIVE_ID_C: drive_t *PvlDriveID;
case SSM_PVL_REQUEST_ID_C: job_id_t *PvlRequestID;
case SSM_PVL_VOL_ID_C: vol_t *PvlVolID;
case SSM_PVR_CART_ID_C: cart_t *PvrCartID;
case SSM_SS_MAP_ID_C: hpssoid_t *SsMapID;
case SSM_SS_PV_ID_C: ssm_ss_pv_t *SsPvID;
case SSM_SS_SS_ID_C: hpssoid_t *SsSsID;
case SSM_SS_VV_ID_C: hpssoid_t *SsVvID;

case SSM_MAX_CLASS: unsigned32 *MaxClass;

} SrvInfoUnion_t;

InvalidMO

Invalid managed object.

AllFileMO

Bitfile managed object and Name Server file information.

AllServerMO

Server managed object.

BfsBitfileMO

Bitfile managed object.

DmgDmgMO

DMAP Gateway managed object.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-127
Rev. 0

DmgFilesetMO

DMAP Gateway fileset managed object.

DmgFilesetFullMO

The full DMAP Gateway fileset managed object.

DmgFilesetListMO

List of DMAP Gateway fileset managed objects.

HdmFilesetMO

HDM fileset managed object.

LogdLogfileMO

Logfile managed object.

LsStatsMO

Location Server statistics managed object.

MmSfsMO

SFS managed object.

MpsMpsMO

MPS managed object.

MpsSClassMO

MPS storage class managed object.

MpsSClassAllMO

List of all MPS storage classes.

MvrDeviceMO

Device managed object.

MvrMvrMO

Mover managed object.

Nfs2StatsMO

NFS statistics managed object.

NsNsMO

Name Server managed object.

NsFilesetMO

Name Server fileset managed object.

NsFilesetFullMO

Full Name Server fileset managed object.

PvlDriveMO

Drive managed object.

Chapter 8: System Manager Functions

8-128 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

PvlPvlMO

PVL managed object.

PvlQueueMO

Queue managed object.

PvlRequestMO

Request managed object.

PvlVolMO

Volume managed object.

PvrCartMO

Cartridge managed object.

PvrPvrMO

PVR managed object.

SsMapMO

Map managed object.

SsPvMO

Physical volume managed object.

SsSsMO

Storage segment managed object.

SsSsrvMO

Storage Server managed object.

SsVvMO

Virtual volume managed object.

AllAcctCF

Accounting Policy Configuration File entry.

AllCosCF

Class of Service Configuration File entry.

AllDevDriveCF

Device and Drive Configuration File entries.

AllFileFamilyCF

File Family Configuration File entries.

AllHierCF

Hierarchy Configuration File entry.

AllLsCF

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-129
Rev. 0

Location Server Policy Configuration File entry.

AllRemoteSiteCF

Remote Site Configuration File entry.

AllMigrPolicyCF

Migration Policy Configuration File entry.

AllPurgPolicyCF

Purge Policy Configuration File entry.

AllSClassCF

Storage Class Configuration File entry.

AllServerCF

HPSS Server Configuration File entry.

BfsBfsC

BFS Configuration File entry.

BfsBfsegdiskCF

Bitfile Disk Segment Configuration File entry.

BfsBfsegtapeCF

Bitfile Tape Segment Configuration File entry.

BfsBitfileCF

Bitfile Configuration File entry.

DmgDmgCF

DMAP Gateway Configuration File entry.

DmgFilesetCF

DMAP Gateway Fileset Configuration File entry.

LogcLogcCF

Logging Client Configuration File entry.

LogcPolicyCF

Log Policy Configuration File entry.

LogdLogdCF

Logging Daemon Configuration File entry.

MmMmCF

Metadata Manager Monitor Configuration File entry.

Mnt1Mnt1CF

Mount Daemon Configuration File entry.

MpsMpsCF

Chapter 8: System Manager Functions

8-130 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

MPS Configuration File entry.

MvrDeviceCF

Device Configuration File entry.

MvrMvrCF

Mover Configuration File entry.

Nfs2Nfs2CF

NFS Daemon Configuration File entry.

NsNsCF

Name Server Configuration File entry.

PvlDriveCF

Drive Configuration File entry.

PvlPvlCF

PVL Configuration File entry.

PvlVolCF

Volume Configuration File entry.

PvrCartCF

Cartridge Configuration File entry.

PvrPvrCF

PVR Configuration File entry.

SsMapCF

Map Configuration File entry.

SsPvCF

Physical Volume Configuration File entry.

SsSsCF

Storage Segment Configuration File entry.

SsSsrvCF

Storage Server Configuration File entry.

SsVvCF

Virtual Volume Configuration File entry.

AllAcctID

Accounting Policy ID.

AllCosID

Class of service ID.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-131
Rev. 0

AllDescNameID

Descriptive name.

AllDevDriveID

Device/drive ID.

AllFileFamilyID

File Family ID.

AllFileID

Combination of file name and bitfile ID.

AllFilesetD

Fileset ID.

AllFilesetNameID

Fileset name.

AllFilesetObjID

Fileset object handle.

AllHierID

Hierarchy ID.

AllMigrPolicyID

Migration Policy ID.

AllPurgPolicyID

PurgePolicyID.

AllRemoteSiteID

Remote Site ID.

AllSClassID

Storage Class ID, when reading Configuration File.

AllServerID

ServerID (UUID).

BfsBitfileID

Bitfile ID.

BfsBitfileRegID

Bitfile ID for registrations; name and hppsoid_t.

HdmFilesetID

HDM Fileset ID.

LogdLogfileID

Logfile ID.

Chapter 8: System Manager Functions

8-132 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

MpsSClassID

Storage Class ID, Storage Class managed object.

MvrDeviceID

Device ID (Mover).

PvlDriveID

Drive ID (PVL).

PvlRequestID

Request ID.

PvlVolID

Volume ID.

PvrCartID

Cartridge ID.

SsMapID

Map ID.

SsPvID

Physical Volume ID.

SsSsID

Storage Segment ID.

SsVvID

Virtual Volume ID.

MaxClass

Maximum SrvInfoUnion class type, for defaults.

Clients

The System Manager and Data Server share information in many operations by means of the
SrvInfoUnion_t.

8.1.3.11. Drive Data ID - DriveDataID_t

Description

Both the Mover and the PVL maintain configuration files for drives. The two files must be kept in
synchronization. The Mover and PVL share a common device/drive ID for each drive, referenced by SSM
as the DeviceID of the DriveDataID_t.

Format

typedef struct DriveDataID {
unsigned32 DeviceID;
unsigned32 MvrID;
unsigned32 PvlID;

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-133
Rev. 0

} DriveDataID_t;

DeviceID

Common device/drive ID of each drive.

MvrID

Index of the Mover into the Server List.

PvlID

Index of the PVL into the Server List.

Clients

The System Manager and Data Server share the DriveDataID in device and drive configuration
operations.

8.3.1.12. Drive Data for Configuration Operations - DriveData_t

Description

The Drive Data structure contains the necessary information for adding or deleting a Mover Device
Configuration File and a PVL Device Configuration File entry.

Format

typedef struct DriveData {
unsigned32 MvrID;
unsigned32 PvlID;
device_desc_md_t MvrDevice;
drive_data_t PvlDrive;

} DriveData_t;

MvrID

Server list ID of Mover.

PvlID

Server list ID of PVL.

MvrDevice

Mover device data.

PvlDrive

PVL drive data.

Clients

The System Manager and Data Server share the Drive Data structure in device/drive configuration
operations.

8.3.1.13. Cartridge Import Data - PvlImport_t

Description

PvlCartInfo contains identifying information about a list of cartridges to be imported or exported from the
PVL. PvlImport contains the parameters needed by the PVL for the import.

Chapter 8: System Manager Functions

8-134 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The MaxDrives parameter allows the user to specify the maximum number of drives to devote to the
import. The System Manager implements this by creating MaxDrives threads, partitioning the list of
cartridges among the threads as equally as possible, and allowing the threads to import their sublists
concurrently. This, however, is no guarantee that the PVL will actually allot that many drives to the
imports.

Format

typedef struct PvlCartInfo {
unsigned32 NumCarts;
[size_is(NumCarts)] cart_t CartridgeName[*];

} PvlCartInfo_t;

NumCarts

Number of cartridges.

CartridgeName

List of cartridge names.

typedef struct PvlImport {
unsigned32 PVRID;
unsigned32 MaxDrives;
media_type_t MediaType;
unsigned32 ImportType;
unsigned32 Sides;
manufacturer_t Manu;
lot_number_t Lot;

} PvlImport_t;

PVRID

Index of PVR in the Server List.

MaxDrives

Maximum number of drives.

MediaType

Media type. Refer to the Physical Volume Library Functions chapter for a description of media_type_t.

ImportType

Import type.

Sides

Number of sides (partitions).

Manu

Manufacturer.

Lot

Lot.

Clients

The System Manager and Data Server exchange the Cartridge Import Data structures in operations that
import and export cartridges.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-135
Rev. 0

8.3.1.14. Storage Server Resource Data Structure - SsResources_t

Description

The SsPVInfo_t structure contains identifying information about a list of physical volumes to be defined in
the Storage Server. The SsResources_t structure contains the parameters needed by the Storage Server
to define the volumes.

Most of the parameters for the storage class creation are taken from the storage class definition. For
disks, the estimated size may differ from that of the storage class definition.

Format

typedef struct SsPVInfo {
unsigned32 NumPVs;
[size_is(NumPVs)] vol_t PVName[*];

} SsPVInfo_t;

NumPVs

Number of physical volumes in list.

PVName

List of physical volume names.

typedef struct SsResources {
unsigned32 VVSClassId;
acct_rec_t Acct;
u_signed64 EstimatedSize;

} SsResources_t;

VVSClassId

Storage Class ID.

Acct

Account ID.

EstimatedSize

Physical volume estimated size.

Clients

The System Manager and Data Server exchange the Resource Data structures in operations for adding
and deleting resources to the Storage Server.

8.3.1.15. Storage Server Repack Structure - SsRepack_t

Description

The SsRepack_t structure contains information about a list of virtual volumes to be repacked.

Format
typedef struct SsRepack {

[string] char SourceFile[HPSS_MAX_PATH_NAME];
[string] char TargetFile[HPSS_MAX_PATH_NAME];
unsigned32 SClassID;
unsigned32 NumberVVs;
unsigned32 SSID;

Chapter 8: System Manager Functions

8-136 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

unsigned32 Flags;
unsigned32 Threshold;

} SsRepack_t;

SourceFile

File containing list of VVs to repack.

TargetFile

File which will contain list of repacked VVs.

SClassID

Storage Class ID

NumberVVs

How many virtual volumes to reclaim.

SSID

Storage Server ID.

Flags

Repack flags.

Threshold

Target space threshold at which to stop.

The SourceFile and TargetFile parameters are not used in R3.

Clients

The System Manager and Data Server exchange the Reclaim data structures in operations for reclaiming
virtual volumes.

8.3.1.16. Storage Server Reclaim Structure - SsReclaim_t

Description

The SsReclaim_t structure contains information about a list of virtual volumes to be reclaimed.

Format

typedef struct SsReclaim {
unsigned32 SSID;
unsigned32 PVLID;
unsigned32 NumberVVs;
unsigned32 SClassID;
[string] char WorkingDirectory[HPSS_MAX_PATH_NAME];

} SsReclaim_t;

SSID

Storage Server ID.

PVLID

PVL ID.

NumberVVs

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-137
Rev. 0

How many virtual volumes to reclaim.

SClassID

Storage Class ID.

WorkingDirectory

Working directory.

Clients

The System Manager and Data Server exchange the Reclaim data structures in operations for reclaiming
virtual volumes.

8.3.1.17. ClientID

The ClientID is an unsigned32 which consists of two values. The BaseID, always placed in the lower 16
bits of the ClientID, represents the index of the client in the Client List kept by the System Manager. It is
assigned to the client at check-in by the System Manager and required as input on all subsequent APIs.
The FunctionID, placed in the upper 16 bits of the ClientID, is optionally included by the client on the
ssm_AttrReg call. The R3 Data Server will use the FunctionID as a console ID, so that it can support
different registrations for the same managed object for multiple consoles, but different System Manager
clients are free to use the FunctionID in any way they choose. The FunctionID is never required, so
clients can choose to ignore it.

The System Manager will store registrations for the same BaseID with different FunctionIDs as separate
entries in the client list of the appropriate entry in SSM_SM_registered_mo. In this way, registrations and
deregistrations for one console will not affect those for another console. However, if the same client has
registered for more than one FunctionID for a particular managed object, that client will receive only one
copy of the notification, which he is then responsible for delivering to the proper consoles as appropriate.

8.3.2. Data Private to the System Manager

8.3.2.1. Table of Registered Clients - client_list_t

Description

The table of registered clients includes the CDS name and binding handle for each client who checks in.
It has a mutex and version number for protecting the connection handle; the binding handles are protected
by the handles library.

Slots are available for reuse when a client checks out.

The InUse flag remains set while a client is checking out, so that no other client can manipulate the
binding or connection handles. The SSM_SM_IN_USE bit of the BhState flag, however, is cleared
immediately when the client begins check-out to show that no further notifications should be sent to that
client.

Clients who cannot be contacted within SSM_SM_CLIENT_MAX_FAILTIME seconds are checked out
automatically.

Whenever a client is successfully notified, his FailTime and Failures are cleared and his SuccessTime is
reset. In order to avoid locking the mutex unnecessarily, this is only done if the FailTime has been
previously set, and the check on FailTime is done before locking the mutex. Therefore, there is a window
in which the failure information could be corrupted, but in practice it is not likely this would result in an
automatic check-out, so the risk is taken for the sake of efficiency.

Chapter 8: System Manager Functions

8-138 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The number of queue monitor threads per client is determined by a set of environment variables specified
in hpss_env. The set of queue monitor threads for each slot in the client table is created when a client
first checks into that slot. At that point, NotifyQInit is set to true. If the client checks out and a different
client subsequently checks into the same slot, the same queue monitor threads are used.

Format

typedefstruct client_struct {
unsigned32 InUse;
char ClientName[HPSS_MAX_DCE_NAME];
unsigned32 NotifyQInit;
rpc_master_handle_t Bh;
unsigned32 BhState;
condition_variable_t BhLock;
hpss_connect_handle_t *Ch;
rpc_master_handle_t ChBh;
unsigned32 ChState;
unsigned32 ChVersion;
condition_variable_t ChLock;
time_t SuccessTime;
time_t FailTime;
unsigned32 FailCount;
pthread_mutex_t FailMutex;

} client_struct_t;

InUse

Whether the slot defines a valid client.

ClientName

Client’s CDS name.

NotifyQInit

Whether notify queue threads and locks have been created.

Bh

Binding handle to client.

BhState

Binding state.

BhLock

Lock for Bh and BhState.

Ch

Connection handle.

ChBh

Binding handle upon which Ch is built.

ChState

State of Ch and ChBh.

ChVersion

Version number of Ch.

ChLock

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-139
Rev. 0

Lock for Ch, ChBh, ChState, and ChVersion.

SuccessTime

Time of last success.

FailTime

Time at which connections to client began to fail.

FailCount

Count of failures since FailTime.

FailMutex

Lock for manipulating FailTime, FailCount, SuccessTime.

typedefstruct client_list {
client_struct_t List[SSM_MAX_CLIENT];

} client_list_t;

List

The list of clients.

Clients

The Client List is used internally by the System Manager.

8.3.2.2. Server Network Connection Table - server_net_t

Description

The Server Network Connection Table includes the interface specification and binding handles for each
server. It has a mutex and version number for protecting the connection handle; the binding handles are
protected by the handles library.

The Server Network Connection Table uses the same index for each server as the Server List. Slots are
not reused.

The MonitorTh is the ID of a thread created to monitor the server’s execution and connection status. The
thread executes the sm_adm_check_one function. The MonitorThRC is initialized to
SSM_ENO_MONITOR_TH, indicating no thread has yet been created for the server. Once the thread is
created, MonitorThRC is set to SSM_SM_MONITOR_TH_RUNNING. If the server needs no monitor
thread, either because it is a SNOOTY server or because its configuration has been deleted and it has
been shut down, the MonitorThRC is set to 0. If the monitor thread exits for any other reason, it stores its
exit value in the MonitorThRC.

Format

typedef union bh_primary {
trpc_master_handle_t TRPC;
rpc_master_handle_t RPC;

} bh_primary_t;

TRPC

TRPC binding handle.

RPC

Chapter 8: System Manager Functions

8-140 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

RPC binding handle.

typedefstruct server_net {
bh_primary_t Bh;
hpss_connect_handle_t *Ch;
rpc_master_handle_t ChBh;
unsigned32 ChState;
unsigned32 ChVersion;
condition_variable_t ChLock;
rpc_if_handle_t Ifspec;
pthread_t MonitorTh;
signed32 MonitorThRC;
condition_variable_t MonitorLock;

} server_net_t;

Bh

Primary binding handle.

Ch

Connection handle.

ChBh

Binding handle used to build connection handle.

ChState

State of Ch and ChBh.

ChVersion

Connection handle version.

ChLock

Condition variable for Ch, ChBh, ChState, ChVersion.

Ifspec

Interface specification.

MonitorTh

Monitor thread ID.

MonitorThRC

Return code from monitor thread.

MonitorLock

Condition variable to protect MonitorTh and MonitorThRC.

typedef struct server_net_list {
unsigned32 Size;
server_net_t List[SSM_MAX_SERVERS];

} server_net_list_t;

Size

Size of the list.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-141
Rev. 0

List

The list of servers.

Clients

The Server Network Connection Table is used internally by the System Manager.

8.3.2.3. Table of Registered Managed Object Attributes - registered_mo_t

Description

The Table of Registered Managed Object Attributes keeps track of which clients have registered for which
attributes of which managed objects for which servers.

Format

typedef struct registered_client {
unsigned32 ClientID;
u_signed64 RegisterBitmap;
struct registered_client *Next;

} registered_client_t;

ClientID

Index of client in the Client List.

RegisterBitmap

Attributes of this managed object for which the client is registered.

Next

Next client in linked list of clients registered for this managed object.

typedef struct registered_mo {
unsigned32 ServerID;
unsigned32 MOClass;
SrvInfoUnion_t *ObjectID;
u_signed64 RegisterBitmap;
registered_client_t *Clients;
struct registered_mo *Next;

} registered_mo_t;

ServerID Index of Server in Server List.

MOClass Type of managed object.

ObjectID Object ID of the managed object.

RegisterBitmap All attributes of this managed object for which any client is registered.

Clients Linked list of clients registered for this managed object.

Next Next managed object in linked list.

Clients

The Table of Registered Managed Object Attributes is used internally by the System Manager.

Chapter 8: System Manager Functions

8-142 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.3.2.4. Notification Queues

Description

There are five notification queues:

SSM_SM_NOTIFY_Q_DATA for managed object attribute changes.

SSM_SM_NOTIFY_Q_LIST for SSM List and information notifications.

SSM_SM_NOTIFY_Q_LOG for alarms, events, and status messages.

SSM_SM_NOTIFY_Q_TAPE for tape mount notifications.

SSM_SM-NOTIFY_Q_TAPE_CHECKIN for tape check-in notifications.

Items are added to each queue using sm_client_notify_q_add by the processes which receive or package
notifications:

sm_client_notify_info

sm_client_notify_list

ssm_LogMsgNotify

ssm_MountNotify

ssm_process_notification

ssm_TapeCheckInNotify.

Items are removed from each queue by one or more dedicated threads per client, each executing the
sm_client_notify_q_monitor function. The number of threads to be created per client per queue is
determined by these environment variables, defined in the hpss_env file:

HPSS_NOTIFY_Q_DATA_THREADS for the data queue.

HPSS_NOTIFY_Q_LIST_THREADS for the list queue.

HPSS_NOTIFY_Q_LOG_THREADS for the log queue.

HPSS_NOTIFY_Q_TAPE_THREADS for the tape queue.

HPSS_NOTIFY_Q_TAPE_CHECKIN_THREADS for the tape check-in queue.

The System Manager imposes reasonable limits on the number of threads.

A separate condition variable structure is defined for the notification queue, since we use it differently than
the standard System Manager condition variable. In particular, we treat the Predicate as a bitmask
defining which clients have just had notifications added to the queue.

We define a special copy of the log message, so that we can malloc just enough space for the actual
message body and not the entire 16k allocated to a real log message, to store on our queue.

The DataChange_t structure referenced below is defined in the Data Structure Design Specification.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-143
Rev. 0

For list notifications, only a code defining the list type is stored in the queue; when the queue entry is
processed, a copy of the list will be allocated then to send to the Data Server.

Each queue entry includes a bitmask of the clients to receive that notification, ClientsToNotify. Each
thread which processes the queue will check the mask and process only the items for its client. It will set
its bit in the ClientsInProcess mask while it attempts to send the notification, so that if other threads are
processing the queue for the same client they will skip the entry. The last thread to process an entry
removes it from the queue.

Format

typedef struct notify_queue_lock {
pthread_mutex_t Mutex;
pthread_cond_t Cond;
u_signed64 Predicate;

} notify_queue_lock_t;

Mutex

Mutex to protect queue.

Cond

Condition variable to protect and signal queue.

Predicate

Mask of clients for whom a notification was added.

typedef struct log_msg_queue_info {
log_rec_hdr_t LogRecHdr;
char *LogRecBody;

} log_msg_queue_info_t;

LogRecHdr

Copy of the log record header from alarm, event, status.

LogRecBody

Log message.

typedef union notify_queue_info {
log_msg_queue_info_t LogMsg;
DataChange_t DataChange;
Mount_t Mount;
unsigned32 Info;
unsigned32 List;
TapeCheckIn_t TapeCheckIn;

} notify_queue_info_t;

LogMsg

Alarm, event, or status message.

DataChange

Managed object attribute notification.

Mount

Chapter 8: System Manager Functions

8-144 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Tape mount notification.

Info

Information notification.

List

List notification.

TapeCheckIn

Tape check-in notification.

typedef struct notify_queue {
u_signed64 ClientsToNotify;
u_signed64 ClientsInProcess;
unsigned32 ServerID;
notify_queue_info_t NotifyQInfo;
struct notify_queue *Next;
struct notify_queue *Prev;

} notify_queue_t;

ClientsToNotify

Clients to receive this notification.

ClientsInProcess

Clients which are working on this entry.

ServerID

Server who sent the notification.

NotifyQInfo

Info for building the notification.

Next

Next entry in queue.

Prev

Previous entry in queue.

Clients

The Notification Queues are used internally by the System Manager.

8.3.2.5. Configuration File List - config_file_list_t

Description

The Configuration File List lists the name of each known Encina file, the type of configuration file it is, and
the server who references it.

Format

typedef struct config_file {
unsigned32 InUse;
unsigned32 CFClass;
unsigned32 Owner;

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-145
Rev. 0

char ConfigFileName[HPSS_MAX_DCE_NAME];
} config_file_t;

InUse

Whether this slot defines a valid file.

CFClass

Type of configuration file.

Owner

Server who references the fil.e

ConfigFileName

File name.

typedef struct config_file_list {
unsigned32 Size;
config_file_t List[SSM_SM_MAX_CFILES];

} config_file_list_t;

Size

Size of the list.

List

The list of files. Refer to the definition of server_config_list_t provided in this chapter.

Clients

The Configuration File List is used internally by the System Manager.

8.3.2.6. Copy of the HPSS Server Configuration File - server_config_list_t

Description

The server_config_list_t structure is a copy of the HPSS Server Configuration File. It uses the same index
for each server as the Server List. Slots are not reused.

Format

typedef struct server_config_list {
unsigned32 Size;
hpss_server_config_t List[SSM_MAX_SERVERS];

} server_config_list_t;

Size

Size of the list.

List

The list of servers.

Clients

The HPSS Server Configuration File Copy is used internally by the System Manager.

Chapter 8: System Manager Functions

8-146 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.3.2.7. Condition Variable Structure - condition_variable_t

Description

The Condition Variable Structure defines a condition variable and associated mutex and predicate.

Format

typedef struct condition_variable {
pthread_mutex_t Mutex;
pthread_cond_t Cond;
unsigned32 Predicate;

} condition_variable_t;

Mutex

Mutex to control access to the condition variable.

Cond

Condition variable.

Predicate

Predicate.

Clients

The Condition Variable Structure is used internally by the System Manager.

8.3.2.8. Drive Data Structure - DriveDataID_t

Description

Configuration on PVL drives and Mover devices is done in tandem to ensure that the information on each
pair is kept in sync. This structure is used as an "object ID" to identify device/drive pairs in configuration
requests to the System Manager.

Format
typedef struct DriveDataID {

unsigned32 DeviceID;
unsigned32 MvrID;
unsigned32 PvlID;

} DriveDataID_t;

DeviceID

Device/drive ID shared between the Mover and the PVL.

MvrID

Mover ID.

PvlID

PVL ID.

Clients

This structure is used internally by the System Manager.

8.3.2.9. Bitfile ID Register Structure - ssm_bitfile_reg_id_t

Description

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-147
Rev. 0

This structure is used internally to the System Manager to associate bitfile ids (SOIDs) with bitfile names.
Clients should not use this structure directly.

Format

typedef struct ssm_bitfile_reg_id {
[string] char FileName[HPSS_MAX_PATH_NAME];
hpssoid_t BitfileID;

} ssm_bitfile_reg_id_t;

FileName

The name of an HPSS bitfile.

BitfileID

The ID (SOID) of the bitfile.

8.3.2.10. Descriptive Name - ssm_descname_t

Description

This structure is used as an "object ID" when the object needed is a server descriptive name. Currently it
is used only when doing logging policy configurations.

Format

typedef struct ssm_descname {
[string] char DescName[HPSS_MAX_DESC_NAME];

} ssm_descname_t;

DescName

The descriptive name of an HPSS server.

Clients

This structure is used internally by the System Manager.

8.3.2.11. Bitfile Object ID - ssm_file_id_t

Description

This structure is used as an "object ID" for operations involving bitfile managed objects. It specifies a
bitfile by its name.

Format

typedef struct ssm_file_id {
[string] char FileName[HPSS_MAX_PATH_NAME];

} ssm_file_id_t;

FileName

The name of an HPSS bitfile.

Clients

This structure is used internally by the System Manager.

8.3.2.12. Log File Object ID - ssm_logfile_t

Description

Chapter 8: System Manager Functions

8-148 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

This structure is used as an "object ID" for operations involving logfile managed objects. It specifies the
name of a logfile.

Format

typedef struct ssm_logfile {
[string] char Logfile[HPSS_MAX_FILE_NAME];

} ssm_logfile_t;

The name of a logfile. This name does not include path information.

Clients

This structure is used internally by the System Manager.

8.3.2.13. Storage Server PV Object ID - ssm_ss_pv_t

Description

This structure is used as an "object ID" for operations involving Storage Server physical volume managed
objects. It specifies the name of a physical volume.

Format

typedef struct ssm_ss_pv {
[string] char PVName[PV_NAME_SIZE];

} ssm_ss_pv_t;

PVName

The name of a Storage Server physical volume.

Clients

This structure is used internally by the System Manager.

8.3.2.14. Site List – SiteList_t

Description

The SiteList_t structure defines an SSM Remote Site list.

Format:

The SiteList_t structure has the following format:

typedef struct SiteList {
unsigned32 Size;
unsigned32 Status;
unsigned32 Version;
[size_is(Size)] hpss_site_md_t List[*];

} SiteList_t;

Size

The number of remote sites in the list, and the size of the List conformant array.

Status

A group of flag bits describing the current status of the Remote Site list.

Version

A version number or sequence number for the list.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-149
Rev. 0

List

An array of HPSS Remote Site structures. hpss_site_md_t is an HPSS data type defined in hpss_site.idl.

8.3.2.15. File Family Structure – FileFamilyStruct_t

Description

The FileFamilySturct_t defines a single file family record.

Format

The FileFamilyStruct_t structure has the following format:

typedef struct FileFamilyStruct {
unsigned32 FamilyId;
[string] char FamilyName[HPSS_MAX_OBJECT_NAME];

} FileFamilyStruct_t;

FamilyId

The ID number of the File Family.

FamilyName

The File Family name.

8.3.2.16. File Family List – FileFamilyList_t

Description

The FileFamilyList_t structure defines an SSM File Family list.

Format

The FileFamilyList_t structure has the following format:

typedef struct FileFamilyList {
unsigned32 Size;
unsigned32 Status;
unsigned32 Version;
[size_is(Size)] FileFamilyStruct_t List[*];

} FileFamilyList_t;

Size

The number of file families in the list, and the size of the List conformant array.

Status

A group of flag bits describing the current status of the File Family list.

Version

A version number or sequence number for the list.

 List

An array of SSM File Family structures. The FileFamilyStruct_t structure defines a descriptive structure
for one File Family.

8.3.2.17. File Attribute Structure – ssm_fileattr_t

Description

Chapter 8: System Manager Functions

8-150 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The ssm_fileattr_t structure contains the name and attributes for a file.

Format

The ssm_fileattr_t structure has the following format:

typedef struct ssm_fileattr {
[string] char FileName[HPSS_MAX_PATH_NAME];
hpss_fileattr_t FileAttr;

} ssm_fileattr_t;

FileName

The File name.

FileAttr

The file attributes.

8.3.2.18. Logging Daemon Logfile Name Structure – ssm_logfile_t

Description

The ssm_logfile_t structure contains the name of the Loggin Daemon’s logfile.

Format

The ssm_logfile_t structure has the following format:

typedef struct ssm_fileattr {
[string] char Logfile[HPSS_MAX_FILE_NAME];

} ssm_logfile_t;

Logfile

The logfile name.

8.3.2.19. HDM Fileset Identification Structure – ssm_hdm_fileset_id_t

Description

The ssm_hdm_fileset_id_t structure contains information about an HDM fileset.

Format

The ssm_hdm_fileset_id_t structure has the following format:

typedef struct ssm_hdm_fileset_id {
u_signed64 FilesetID;
unsigned32 FileSystemID;
unsigned32 HDMPort;
[string] char HDMHostname[HPSS_MAX_HOST_NAME];
[string] char FileSystemName[HPSS_MAX_PATH_NAME];

} ssm_hdm_fileset_id_t;

FilesetID

The HDM fileset id.

FileSystemID

The HDM fileset file system id.

HDMPort

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-151
Rev. 0

Port number for the HDM controlling this fileset.

HDMHostname

Host where the HDM controlling this fileset is running.

FileSystemName

Name of the file system for this fileset.

8.3.2.20. Name Server Fileset Information Structure – ssm_ns_fileset_t

Description

The ssm_ns_fileset_t structure contains information about an Name Server fileset.

Format

The ssm_ns_fileset_t structure has the following format:

typedef struct ssm_ns_fileset {
ns_FilesetAttrs_t FSAttrs;
ns_Attrs_t Attrs;
ns_AttrBits_t AttrBits;
ns_FilesetAttrBits_t FSAttrBits;

} ssm_ns_fileset_t;

FSAttrs

The Name Server Fileset attributes structure.

Attrs

The Name Server attributes structure.

AttrBits

The Name Server attributes bits.

FSAttrBits

The Name Server Fileset attributes bits.

8.3.2.21. Fileset Name Structure – ssm_fileset_name_t

Description

The ssm_fileset_name_t structure contains a Fileset Name.

Format

The ssm_fileset_name_t structure has the following format:

typedef struct ssm_fileset_name {
[string] char FilesetName[NS_FS_MAX_FS_NAME_LENGTH];

} ssm_fileset_name_t;

FilesetName

The Name Server Fileset name.

8.3.2.22. DMAP Gateway Fileset Structure – ssm_dmg_fileset_t

Description

Chapter 8: System Manager Functions

8-152 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The ssm_dmg_fileset_t structure contains information needed to create a DMAP Gateway Fileset .

Format

The ssm_dmg_fileset_t structure has the following format:

typedef struct ssm_dmg_fileset {
unsigned32 CreateBoth;
unsigned32 UID;
unsigned32 GID;
unsigned32 Mode;
dmg_fileset_attr_t FilesetAttr;

} ssm_dmg_fileset_t;

CreateBoth

Flag to tell the DMAP Gateway to create both the fileset in both DFS and HPSS.

UID

User id that is to own the fileset.

GID

Group id that is to own the fileset.

Mode

Default permissions for the fileset.

FilesetAttr

Attributes that are needed to create the fileset.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-153
Rev. 0

8.4. Data Server Client Interfaces

The interface below is for any Data Server clients of the System Manager

Data Server Clients are expected to provide the System Manager a client_Notify API to receive
asynchronous notifications. Clients who do not provide this api will be automatically checked out by the
System Manager.

Chapter 8: System Manager Functions

8-154 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.4.1. client_Notify

Purpose
DCE server function for SSM Data Server.

Syntax
#include "ssm_ds_if.h"

signed32 client_Notify(
handle_t bh, /* IN */
hpss_connect_handle_t *ch, /* IN */
unsigned32 server_id, /* IN */
NotifyUnion_t *notification, /* IN */
error_status_t *RPCstatus /* OUT */

);

Description

This function is called by the SSM System Manager via DCE RPC’s in order to asynchronously notify the
Data Server of:

log messages from the logging daemon

data changes from HPSS servers

mount and tape check-in requests from PVRs

new lists (e.g., the server list) from the System Manager

miscellaneous requests from the System Manager

Because Sammi is not thread-safe, all Sammi functions have been isolated to one thread. Therefore, this
function does nothing except receive notification packets from the System Manager, reformat them into
more convenient form, and place them into a singly-linked FIFO list for later processing by the Sammi
thread.

Parameters
bh Explicit binding handle.

ch Pointer to an HPSS connection handle.

server_id Server array index of server issuing the notification.

notification Pointer to a notification union structure.

RPCstatus DCE RPC status return.

Return values
Upon successful completion, a value of zero (0) is returned. If an error occurs, a value of -1 is
returned.

Error conditions
The only error condition returned is -1 to indicate that the caller passed invalid information in the
server ID or notification arguments, or that the caller is not authorized to call the API.

See also

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-155
Rev. 0

None.

Clients
System Manager

Notes
None.

Chapter 8: System Manager Functions

8-156 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

8.5. Other Data Definitions (Data Server Clients)

This section describes key data definitions definitions that are used by Data Server clients.

A data definition may be represented by constructs such as data structures and constants. For each data
definition, a description, format (including parameter descriptions), and clients which access the data
definition are provided.

8.5.1. Data Server Notification structure - NotifyUnion_t

Description

The NotifyUnion_t structure is used to pass information from the SSM System Manager to the SSM Data
Server and to other clients of the System Manager. It is an argument for the client_Notify API.

Format

The NotifyUnion_t structure has the following format:

typedef union switch (unsigned32 NotifyClass) NotifyData {
case SSM_ALARM_N: log_msg_t Alarm;
case SSM_EVENT_N: log_msg_t Event;
case SSM_STATUS_N: log_msg_t Status;
case SSM_DATA_CHANGE_N: DataChange_t DataChange;
case SSM_MOUNT_N: Mount_t Mount;
case SSM_INFO_N: unsigned32 Info;
case SSM_LIST_N: ListUnion_t List;
case SSM_TAPE_CHECKIN_N: TapeCheckIn_t TapeCheckIn;

} NotifyUnion_t;

Alarm

The log_msg_t structure is defined by the Logging Services.

Event

The log_msg_t structure is defined by the Logging Services.

Status

The log_msg_t structure is defined by the Logging Services.

Data Change

The DataChange_t structure is used to send a data change notification (a change in a server attribute for
which notifications have been requested by setting a bit in the server’s registration bitmap).

Format

The DataChange_t structure has the following format:

typedef struct DataChange {
unsigned64 RegisterBitmap;
SrvInfoUnion_t Attribute;

} DataChange_t;

RegisterBitmap

A 64-bit registration bitmap indicating which managed attributes have changed.

Attribute

The managed object sent from the notifying server, with the attributes marked by RegisterBitmap
filled in with the changed data. The SrvInfoUnion_t structure is defined in this chapter.

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-157
Rev. 0

Mount

The Mount_t structure is used to send mount request notifications.

Format

The Mount_t structure has the following format:

typedef struct Mount {
unsigned32 PVRID;
cart_t *Cart;
side_t *Side;
drive_addr_t *Drive;
unsigned32 RequestType;

} Mount_t;

PVRID

Index into the SSM server array of the PVR issuing the mount request.

Cart

A pointer to a cartridge ID structure. The cart_t data type is defined in the PVR chapter.

Side

A pointer to a cartridge side specifier. The side_t data type is defined in the PVR chapter.

Drive

A pointer to a drive address. The drive_addr_t data type is defined in the PVR chapter.

RequestType

A constant defining the request type.

Info

The Info type of notification is used by the SSM System Manager to notify the Data Server (or other client)
of some event of interest only between the System Manager and its clients. The value of Info is set to a
constant describing the type of event that has occurred.

List

The ListUnion_t structure is used to send new metadata list structures, such as the server list or
device/drive list.

Format

The ListUnion_t structure has the following format:

typedef union switch (unsigned32 ListClass) ListData {
case SSM_LIST_SERVER: ServerList_t *ServerList;
case SSM_LIST_COS: COSList_t *COSList;
case SSM_LIST_DRIVE: DriveList_t *DriveList;
case SSM_LIST_SCLASS: SClassList_t *SClassList;
case SSM_LIST_HIER: HierList_t *HierList;
case SSM_LIST_MIGRP: MigrPList_t *MigrPList;
case SSM_LIST_PURGP: PurgPList_t *PurgPList;
case SSM_LIST_SITE: SiteList_t *SiteList;
case SSM_LIST_FILE_FAMILY: FileFamilyList_t *FileFamilyList;

} ListUnion_t;

ServerList

A pointer to a server list. The ServerList_t structure defines an SSM server list. Refer to the

Chapter 8: System Manager Functions

8-158 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Server List - ServerList_t section in this chapter for the format of this structure.

COSList

A pointer to a Class Of Service list. The COSList_t structure defines an SSM Class Of Service
list. Refer to the Class of Service List - COSList_t section in this chapter for the format of this
structure.

DriveList

A pointer to a Class Of Service list. The DriveList_t structure defines an SSM Class Of Service
list. Refer to the Drive List - DriveList_t section in this chapter for the format of this structure.

SClassList

A pointer to a Storage Class list. The SClassList_t structure defines an SSM Storage Class list.
Refer to the Storage Class List - SClassList_t section in this chapter for the format of this
structure.

HierList

A pointer to a Storage Hierarchy list. The HierList_t structure defines an SSM Storage Hierarchy
list. Refer to the Hierarchy List - HierList_t section in this chapter for the format of this structure.

MigrPList

A pointer to a Migration Policy list. The MigrPList_t structure defines an SSM Migration Policy list.
Refer to the Migration Policy List - MigrPList_t section in this chapter for the format of this
structure.

PurgPList

A pointer to a Purge Policy list. The PurgPList_t structure defines an SSM Purge Policy list.
Refer to the Migration Policy List - PurgPList_t section in this chapter for the format of this
structure.

SiteList:

A pointer to a Remote HPSS Site list. The SiteList_t structure defines an SSM Remote Site list.

FileFamilyList:

A pointer to a File Family list. The FileFamilyList_t structure defines an SSM File Family list.

TapeCheckIn

The TapeCheckIn_t structure is used to send tape check-in request notifications.

Format

The TapeCheckIn_t structure has the following format:

typedef struct TapeCheckIn {
unsigned32 PVRID;
cart_t *Cart;
side_t *Side;
ioport_addr_t *IOPort;
unsigned32 RequestType;

} TapeCheckIn_t;

PVRID

Index into the SSM server array of the PVR issuing the tape check-in request.

Cart

Chapter 8: System Manager Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 8-159
Rev. 0

A pointer to a cartridge ID structure. The cart_t data type is defined in the PVR chapter.

Side

A pointer to a cartridge side specifier. The side_t data type is defined in the PVR chapter.

IOPort

A pointer to a ioport address. The ioport_addr_t data type is defined in the PVR chapter.

RequestType

A constant defining the request type.

Chapter 8: System Manager Functions

8-160 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Chapter 9: Location Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 9-1
Rev. 0

9. Location Server Functions

This chapter specifies the Location Server programming interface. Specifically, the following information is
provided:

Client Cache Programming Interface (CCPIs)

Server Programming Interface (SPIs)

Data Definitions

9.1. Client Cache Programming Interface Functions

This section describes all APIs which are provided for access through a client side cache for use by
another HPSS subsystem or by a client external to HPSS. The CCPI interface specification includes the
following information:

Name

Syntax

Description

Parameters

Return Values

Error Conditions

Related Information

Clients

Notes

Chapter 9: Location Server Functions

9-2 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

9.1.1. hpss_LocateBFSByCOSHints

Purpose
Obtain COS and BFS information given COS hints through a local cache.

Syntax
#include "hpss_ls.h"

signed32
hpss_LocateBFSByCOSHints(

signed32 RequestID, /* IN */
uuid_t HPSSId, /* IN */
hpss_cos_hints_t *COSHints, /* IN */
hpss_cos_priorities_t *COSPrio, /* IN */
unsigned32 SortMethod, /* IN */
unsigned32 MaxReturned, /* IN */
ls_cos_bfs_array_t **COSBFS) /* OUT */

Description
Given COS hints, the hpss_LocateBFSByCOSHints function returns a weighted list of COS/BFS
pairs which match. This routine is called by the client API during file creation to determine which
COS and BFS to use. If the results are in the local cache, the results are returned immediately.
Otherwise the local Location Server is contacted and the results are placed in the local cache
before being returned. By default, the COS/BFS pairs (in each element returned) are sorted by
the LS_SORT_BY_WEIGHT method described below.

Parameters
RequestID Request ID for the current request.

HPSSId HPSS ID of the HPSS system to contact. A nil UUID value
defaults to the local HPSS system.

COSHints Pointer to a COS Hints structure. If this is NULL, denoting the
default COS, the COSPrio field must also be NULL.

COSPrio Pointer to a COS Priorities structure. If this is NULL, the
COSHints field must also be NULL.

SortMethod Method used to sort the returned elements. A value of zero (0)
sorts the returned elements according to the default sort method.
Other valid values are:

LS_SORT_BY_COS: Sort by COS then BFS.

LS_SORT_BY_WEIGHT: Sort by Weight, COS then BFS. This
is the default sort method.

MaxReturned Specifies the maximum number of elements to return in
COSBFS. If this is zero (0), all elements that match will be
returned.

COSBFS Array of COS/BFS pairs which match the hints passed in.

Return values

Chapter 9: Location Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 9-3
Rev. 0

Upon successful completion, hpss_LocateBFSByCOSHints returns zero. Otherwise, it returns
one of the following error conditions described below.

Error conditions
HPSS_ECONN Connection problem contacting the Location Server.

HPSS_EFAULT COSBFS is NULL.

HPSS_EINVAL Invalid parameter passed in.

HPSS_EINVALCOS Invalid COS information specified.

HPSS_EINVALHINTS Invalid Hints information specified.

HPSS_ENOENT No COS or BFS was found that matched hints passed in.

HPSS_ENOMEM Not enough memory exists to initialize the client cache.

See also
ls_BFSByCOSHints.

Clients
Client API.

Notes
If the HPSSId parameter specifies a remote HPSS system, a Location Server at that site is
located and contacted by the local Location Server to obtain the COS/BFS information.

The Weight fields returned for the elements in COSBFS are only meaningful when compared with
each other, with the highest value denoting the best match.

Chapter 9: Location Server Functions

9-4 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

9.1.2. hpss_LocateLocationServer

Purpose
Obtain the RPC group name for contacting Location Servers at a site.

Syntax
#include "hpss_ls.h"

signed32
hpss_LocateLocationServer(

signed32 RequestID, /* IN */
uuid_t HPSSId, /* IN */
ls_map_t *Location) /* OUT */

Description
The hpss_LocateLocationServer function returns a local or remote DCE RPC group name for
Location Servers at a site, given the HPSS ID of the HPSS system. If the entry is found in the
local cache, it is returned. If it is not found, the local Location Server is contacted, and the result
is placed into the cache and then returned.

Parameters
RequestID Request ID for the current request.

HPSSId HPSS ID of the HPSS system to contact. A nil UUID value
defaults to the local HPSS system.

Location Location information for the DCE RPC Group.

Return values
Upon successful completion, hpss_LocateLocationServer returns zero. Otherwise, it returns one
of the following error conditions described below.

Error conditions
HPSS_ECONN Connection problem contacting the Location Server.

HPSS_EFAULT Location is NULL.

HPSS_ENOENT No information exists for the location specified by HPSSId.

HPSS_ENOMEM Not enough memory exists to initialize the client cache.

See also
ls_LocationServer.

Clients
None.

Notes
None.

Chapter 9: Location Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 9-5
Rev. 0

9.1.3. hpss_LocateRootNS

Purpose
Obtain the local root Name Server’s location information through a local cache.

Syntax
#include "hpss_ls.h"

signed32
hpss_LocateRootNS(

signed32 RequestID, /* IN */
ls_map_t *Location) /* OUT */

Description
The hpss_LocateRootNS returns the local root Name Server’s location map information. If the
entry is found in the local cache, it is returned. If it is not found, the Location Server is contacted,
and the result is placed into the cache and then returned.

Parameters
RequestID Request ID for the current request.

Location Location information for the local HPSS root Name Server.

Return values
Upon successful completion, hpss_LocateRootNS returns zero. Otherwise, it returns one of the
following error conditions described below.

Error conditions
HPSS_ECONN Connection problem contacting the Location Server.

HPSS_EFAULT Location is NULL.

HPSS_ENOENT No local root Name Server has been defined.

HPSS_ENOMEM Not enough memory exists to initialize the client cache.

See also
ls_RootNS.

Clients
Client API.

Notes
None.

Chapter 9: Location Server Functions

9-6 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

9.1.4. hpss_LocateServerByPath

Purpose
Obtain an HPSS server’s location information from its CDS Path through a local cache.

Syntax
#include "hpss_ls.h"

signed32
hpss_LocateServerByPath(

signed32 RequestID, /* IN */
char *CDSPath, /* IN */
ls_map_t *Location) /* OUT */

Description
The hpss_LocateServerByPath function maps an HPSS Server’s CDS path to its location
information. If the entry is found in the local cache, it is returned. If it is not found, the Location
Server is contacted, and the result is placed into the cache and then returned.

Parameters
RequestID Request ID for the current request.

CDSPath CDS Pathname of the HPSS Server.

Location HPSS Server location information.

Return values
Upon successful completion, hpss_LocateLocationServer returns zero. Otherwise, it returns one
of the following error conditions described below.

Error conditions
HPSS_ECONN Connection problem contacting the Location Server.

HPSS_EFAULT CDSPath or Location is NULL.

HPSS_EINVAL The CDSPath string is empty or not a valid CDS path.

HPSS_ENOENT No location information exists for that CDS path.

HPSS_ENOMEM Not enough memory exists to initialize the client cache.

See also
hpss_LocateServerByUUID, ls_ServerByPath.

Clients
None.

Notes
None.

Chapter 9: Location Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 9-7
Rev. 0

9.1.5. hpss_LocateServerByUUID

Purpose
Obtain an HPSS server’s location information from its UUID through a local cache.

Syntax
#include "hpss_ls.h"

signed32
hpss_LocateServerByUUID(

signed32 RequestID, /* IN */
uuid_t UUID, /* IN */
ls_map_t *Location) /* OUT */

Description
The hpss_LocateServerByUUID function looks up an HPSS server’s location by its UUID. If the
entry is found in the local cache, it is returned. If it is not found, the Location Server is contacted,
and the result is placed into the cache and then returned.

Parameters
RequestID Request ID for the current request.

UUID Universal ID of HPSS Server to locate.

Location HPSS Server location information.

Return values
Upon successful completion, hpss_LocateServerByUUID returns zero. Otherwise, it returns one
of the following error conditions described below.

Error conditions
HPSS_ECONN Connection problem contacting the Location Server.

HPSS_EFAULT Location is NULL.

HPSS_EINVAL The UUID is invalid or is zeroed out (nil).

HPSS_ENOENT No information exists for that UUID.

HPSS_ENOMEM Not enough memory exists to initialize the client cache.

See also
hpss_LocateServerByPath, ls_ServerByUUID.

Clients
Client API.

Notes
None.

Chapter 9: Location Server Functions

9-8 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

9.1.6. hpss_LocationLibInit

Purpose
Initialize the Location Client Cache Library.

Syntax
#include "hpss_ls.h"

signed32
hpss_LocateServerInit(void)

Description
The hpss_LocationLibInit function initializes the Location Client Cache Library for use. Calling this
function is optional since each of the Location Client Cache Library routines call this function
internally if initialization is needed.

Parameters
None

Return values
Upon successful completion, hpss_LocationLibInit returns zero. Otherwise, it returns one of the
following error conditions described below.

Error conditions
HPSS_ECONN Connection problem contacting the Location Server.

HPSS_ENOMEM Not enough memory exists to initialize the client cache.

See also
hpss_LocationLibDeinit.

Clients
Client Cache Library.

Notes
None.

Chapter 9: Location Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 9-9
Rev. 0

9.1.7. hpss_LocationLibDeinit

Purpose
Uninitialize the Location Client Cache Library.

Syntax
#include "hpss_ls.h"

signed32
hpss_LocateServerDeinit(void)

Description
The hpss_LocationLibDeinit function uninitializes the Location Client Cache Library. After this
function is called, no further calls should be made to the Location Client Cache Library.

Parameters
None

Return values
Upon successful completion, hpss_LocationLibDeinit returns zero. Otherwise, it returns one of
the following error conditions described below.

Error conditions
HPSS_ECONN Connection problem contacting the Location Server.

HPSS_EINVAL The Client Cache Library is not currently initialized.

See also
hpss_LocationLibInit, hpss_LocationLibSetConfig.

Clients
None.

Notes
The only reason that this routine should be called is if the caller desires to close down any
connection to the local Location Server. Unless specifically requested, with the
hpss_LocationLibSetConfig function, the Client Cache Library does not maintain open
connections to the Location Server so there is usually no reason to do this.

Chapter 9: Location Server Functions

9-10 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

9.1.8. hpss_LocationLibGetConfig

Purpose
Retrieve the current configuration of the Client Cache Library.

Syntax
#include "hpss_ls.h"

signed32
hpss_LocationLibGetConfig(

ls_lib_config_t *Config) /* OUT */

Description
The hpss_LocationLibGetConfig function returns the current Client Cache Library configuration.
This is useful when called before the Client Cache Library is initialized so that the caller can alter
the behavior of the library. See hpss_LocationLibSetConfig for more details.

Parameters
Config Configuration block returned.

Return values
Upon successful completion, hpss_LocationLibGetConfig returns zero. Otherwise, it returns one
of the following error conditions described below.

Error conditions
HPSS_EFAULT Config is NULL.

HPSS_EINVAL The environment variable denoting the Location Server group
has been set up improperly.

See also
hpss_LocationLibSetConfig.

Clients
None.

Notes
None.

Chapter 9: Location Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 9-11
Rev. 0

9.1.9. hpss_LocationLibSetConfig

Purpose
Set the current configuration of the Client Cache Library.

Syntax
#include "hpss_ls.h"

signed32
hpss_LocationLibSetConfig(

ls_lib_config_t *Config) /* IN */

Description
The hpss_LocationLibSetConfig function sets the current Client Cache Library configuration. This
is useful when called before the Client Cache Library is initialized so that the caller can alter the
behavior of the library. Before calling this routine the hpss_LocationLibGetConfig function should
be called to retrieve the default configuration.

Parameters
Config Configuration to set.

Return values
Upon successful completion, hpss_LocationLibSetConfig returns zero. Otherwise, it returns one
of the following error conditions described below.

Error conditions
HPSS_EFAULT Config is NULL.

HPSS_EINVAL The library has already been initialized and the configuration
cannot be changed, or one or more of the fields of the Config
parameter are invalid.

See also
hpss_LocationLibGetConfig.

Clients
None.

Notes
None.

Chapter 9: Location Server Functions

9-12 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

9.2. Server Programming Interface Functions

This section describes all APIs which are provided for direct access to the Location Server for use by
another HPSS subsystem or by a client external to HPSS. The SPI interface specification includes the
following information:

Name

Syntax

Description

Parameters

Return Values

Error Conditions

Related Information

Clients

Notes

Common Error Conditions

The following error conditions may be returned by any SPI in addition to the ones described under the
individual SPIs.

HPSS_EAGAIN A resource is busy. The request should be retried after a delay.

HPSS_EBADCONN The connection handle is bad. Reconnect and retry the request.

HPSS_EBUSY The Location Server is under heavy load. Rebind to a replicated
Location Server or wait a short period of time before retrying the
request.

HPSS_ENOTREADY The Location Server is starting up or reinitializing and is not ready
to process requests. Retry the request after a short delay.

HPSS_EPERM The caller does not have sufficient permissions to perform the
operation. The caller must have control permission on the
Location Server’s Security ACL to perform administrative
functions such as ls_ServerSetAttrs. All non-administrative
functions require read permission.

HPSS_ESYSTEM An internal Location Server error has occurred. If possible,
rebind to a replicated Location Server and retry the request.

Chapter 9: Location Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 9-13
Rev. 0

9.2.1. ls_BFSByCOSHints

Purpose
Obtain COS and BFS information given COS hints.

Syntax
#include "ls_interface.h"

signed32
ls_BFSByCOSHints(

handle_t Binding, /* IN */
hpss_connect_handle_t *Connect, /* IN */
signed32 RequestID, /* IN */
uuid_t HPSSId, /* IN */
hpss_cos_hints_t *COSHints, /* IN */
hpss_cos_priorities_t *COSPrio, /* IN */
unsigned32 SortMethod, /* IN */
unsigned32 MaxReturned, /* IN */
ls_cos_bfs_array_t **COSBFS, /* OUT */
u_signed64 *MaxFileSizeHint, /* OUT */
ls_cos_bfs_array_t *MinFileSizeHint) /* OUT */

Description
Given COS hints, the ls_BFSByCOSHints function returns a weighted list of COS/BFS pairs which
match. This routine is normally called during file creation to determine which COS and BFS to
use. By default, the COS/BFS pairs (in each element returned) are sorted by the
LS_SORT_BY_WEIGHT method described below.

Parameters
Binding RPC binding handle to Location Server to contact.

Connect Optional connection handle.

RequestID Request ID for the current request.

HPSSId HPSS ID of the HPSS system to contact. A nil UUID value
defaults to the local HPSS system.

COSHints Pointer to a COS Hints structure. If this is NULL, denoting the
default COS, the COSPrio field must also be NULL.

COSPrio Pointer to a COS Priorities structure. If this is NULL, the
COSHints field must also be NULL.

SortMethod Method used to sort the returned elements. A value of zero (0)
sorts the returned elements according to the default sort method.
Other valid values are:

LS_SORT_BY_COS: Sort by COS then BFS.

LS_SORT_BY_WEIGHT: Sort by Weight, COS then BFS. This
is the default sort method.

Chapter 9: Location Server Functions

9-14 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

MaxReturned Specifies the maximum number of elements to return in
COSBFS. If this is zero (0), all elements that match will be
returned.

COSBFS Array of COS/BFS pairs which match the hints passed in.

MinFileSizeHint The minimum file size that the COSBFS information is valid for.
Used as a hint by the Client Cache library.

MaxFileSizeHint The maximum file size that the COSBFS information is valid for.
Used as a hint by the Client Cache library.

Return values
Upon successful completion, ls_BFSByCOSHints returns zero. Otherwise, it returns a common
error condition or one of the following error conditions described below.

Error conditions
HPSS_EFAULT COSBFS, MinFileSizeHint or MaxFileSizeHint is NULL.

HPSS_EINVAL Invalid HPSSId or SortMethod.

HPSS_EINVALCOS Invalid COS information specified.

HPSS_EINVALHINTS Invalid Hints information specified.

HPSS_ENOENT No COS or BFS was found that matched hints passed in.

HPSS_ENOMEM Not enough memory exists to return COSBFS array.

See also
hpss_LocateBFSByCOSHints.

Clients
Client Cache Library.

Notes
Normally the hpss_LocateBFSByCOSHints routine should be called instead since it performs the
same function as this routine, with automatic retry and rebind logic, through a client side cache to
reduce network traffic.

If the HPSSId parameter specifies a remote HPSS system, a Location Server at that site is
located and contacted by the local Location Server to obtain the COS/BFS information.

The Weight fields returned for the elements in COSBFS are only meaningful when compared with
each other, with the highest value denoting the best match.

Chapter 9: Location Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 9-15
Rev. 0

9.2.2. ls_GetServerMaps

Purpose
Retrieve Location Server map information from a remote Location Server.

Syntax
#include "ls_peerIF.h"

signed32
ls_GetServerMaps(

handle_t Binding, /* IN */
hpss_connect_handle_t *Connect, /* IN */
signed32 RequestID, /* IN */
unsigned32 Flags, /* IN */
ls_map_array_ptr_t *Locations) /* OUT */

Description
The ls_GetServerMaps function is used by a local Location Server to query a remote Location
Server for its location map information. It does not normally need to be called outside of the
Location Server itself.

Parameters
Binding RPC binding handle to Location Server to contact.

Connect Optional connection handle.

RequestID Request ID for the current request.

Flags One or more of the following values OR’d together:

LS_GETMAPS_LOCAL: Return maps local to remote Location
Server’s site.

LS_GETMAPS_REMOTE: Return maps foreign to the remote
Location Server’s site. This is normally not used.

Locations Returned conformant array of location maps.

Return values
Upon successful completion, ls_GetServerMaps returns zero. Otherwise, it returns a common
error condition or one of the following error conditions described below.

Error conditions
HPSS_EFAULT Locations is NULL.

HPSS_EINVAL An invalid parameter has been passed.

HPSS_ENOENT No information exists at the remote site for the Flags specified.

See also
None.

Clients
Location Server.

Chapter 9: Location Server Functions

9-16 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Notes
None.

Chapter 9: Location Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 9-17
Rev. 0

9.2.3. ls_LocationServer

Purpose
Obtain the RPC group name for contacting Location Servers at a site.

Syntax
#include "ls_interface.h"

signed32
ls_LocationServer(

handle_t Binding, /* IN */
hpss_connect_handle_t *Connect, /* IN */
signed32 RequestID, /* IN */
uuid_t HPSSId, /* IN */
ls_map_t *Location) /* OUT */

Description
The hpss_LocateLocationServer function returns a local or remote DCE RPC group name for
Location Servers at a site, given the HPSS ID of the HPSS system.

Parameters
Binding RPC binding handle to Location Server to contact.

Connect Optional connection handle.

RequestID Request ID for the current request.

HPSSId HPSS ID of the HPSS system to contact. A nil UUID value
defaults to the local HPSS system.

Location Location information for the DCE RPC Group.

Return values
Upon successful completion, ls_LocationServer returns zero. Otherwise, it returns a common
error condition or one of the following error conditions described below.

Error conditions
HPSS_EFAULT Location is NULL.

HPSS_ENOENT No information exists for the site specified by HPSSId.

See also
hpss_LocateLocationServer.

Clients
Client Cache Library.

Notes
Normally the hpss_LocateLocateServer routine should be called instead since it performs the
same function as this routine, with automatic retry and rebind logic, through a client side cache to
reduce network traffic.

Chapter 9: Location Server Functions

9-18 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

9.2.4. ls_RootNS

Purpose
Obtain the local root Name Server’s location.

Syntax
#include "ls_interface.h"

signed32
ls_RootNS(

handle_t Binding, /* IN */
hpss_connect_handle_t *Connect, /* IN */
signed32 RequestID, /* IN */
ls_map_t *Location) /* OUT */

Description
The ls_RootNS returns the local root Name Server’s location map information

Parameters
Binding RPC binding handle to Location Server to contact.

Connect Optional connection handle.

RequestID Request ID for the current request.

Location Location information for the local HPSS root Name Server.

Return values
Upon successful completion, ls_RootNS returns zero. Otherwise, it returns a common error
condition or one of the following error conditions described below.

Error conditions
HPSS_EFAULT Location is NULL.

HPSS_ENOENT No local root Name Server has been defined.

See also
hpss_LocateRootNS.

Clients
Client Cache Library.

Notes
Normally the hpss_LocateRootNS routine should be called instead since it performs the same
function as this routine, with automatic retry and rebind logic, through a client side cache to
reduce network traffic.

Chapter 9: Location Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 9-19
Rev. 0

9.2.5. ls_ServerByPath

Purpose
Obtain an HPSS server’s location information from its CDS.

Syntax
#include "ls_interface.h"

signed32
ls_ServerByPath(

handle_t Binding, /* IN */
hpss_connect_handle_t *Connect, /* IN */
signed32 RequestID, /* IN */
char *CDSPath, /* IN */
ls_map_t *Location) /* OUT */

Description
The ls_ServerByPath function maps an HPSS Server’s CDS path to its location information.

Parameters
Binding RPC binding handle to Location Server to contact.

Connect Optional connection handle.

RequestID Request ID for the current request.

CDSPath CDS Pathname of the HPSS Server.

Location HPSS Server location information.

Return values
Upon successful completion, ls_LocationServer returns zero. Otherwise, it returns a common
error condition or one of the following error conditions described below.

Error conditions
HPSS_EFAULT CDSPath or Location is NULL.

HPSS_EINVAL The CDSPath string is empty or not a valid CDS path.

HPSS_ENOENT No location information exists for that CDS path.

See also
hpss_LocateServerByPath.

Clients
Client Cache Library.

Notes
Normally the hpss_LocateServerByPath routine should be called instead since it performs the
same function as this routine, with automatic retry and rebind logic, through a client side cache to
reduce network traffic.

Chapter 9: Location Server Functions

9-20 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

9.2.6. ls_ServerByUUID

Purpose
Obtain an HPSS server’s location information from its UUID.

Syntax
#include "ls_interface.h"

signed32
ls_ServerByUUID(

handle_t Binding, /* IN */
hpss_connect_handle_t *Connect, /* IN */
signed32 RequestID, /* IN */
uuid_t UUID, /* IN */
ls_map_t *Location) /* OUT */

Description
The ls_ServerByUUID function looks up an HPSS server’s location by its UUID.

Parameters
Binding RPC binding handle to Location Server to contact.

Connect Optional connection handle.

RequestID Request ID for the current request.

UUID Universal ID of HPSS Server to locate.

Location HPSS Server location information.

Return values
Upon successful completion, ls_ServerByUUID returns zero. Otherwise, it returns a common
error condition or one of the following error conditions described below.

Error conditions
HPSS_EFAULT Location is NULL.

HPSS_EINVAL The UUID is invalid or is zeroed out (nil).

HPSS_ENOENT No information exists for that UUID.

See also
hpss_LocateServerByUUID.

Clients
Client Cache Library.

Notes
Normally the hpss_LocateServerByUUID routine should be called instead since it performs the
same function as this routine, with automatic retry and rebind logic, through a client side cache to
reduce network traffic.

Chapter 9: Location Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 9-21
Rev. 0

9.2.7. ls_ServerGetAttrs

Purpose
Retrieve Location Server attributes.

Syntax
#include "ls_interface.h"

signed32
ls_ServerGetAttrs(

handle_t Binding, /* IN */
hpss_connect_handle_t *Connect, /* IN */
hpss_server_attrib_t *ServerData) /* OUT */

Description
The ls_ServerGetAttrs function retrieves the server attributes of the Location Server. The caller
must have control permissions on the Location Server’s Security ACL in order to call this function.

Parameters
Binding RPC binding handle to Location Server to contact.

Connect Optional connection handle.

ServerData Returned server attributes.

Return values
Upon successful completion, ls_ServerGetAttrs returns zero. Otherwise, it returns a common
error condition or one of the following error conditions described below.

Error conditions
HPSS_EFAULT ServerData is NULL.

See also
ls_ServerSetAttrs.

Clients
SSM.

Notes
None.

Chapter 9: Location Server Functions

9-22 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

9.2.8. ls_ServerSetAttrs

Purpose
Set Location Server attributes.

Syntax
#include "ls_interface.h"

signed32
ls_ServerSetAttrs(

handle_t Binding, /* IN */
hpss_connect_handle_t *Connect, /* IN */
u_signed64 InSelectBitmap, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
hpss_server_attrib_t *InAttributes, /* IN */
hpss_server_attrib_t *OutAttributes) /* OUT */

Description
The ls_ServerSetAttrs function sets the server attributes of the Location Server. The caller must
have control permissions on the Location Server’s Security ACL in order to call this function.

Parameters
Binding RPC binding handle to Location Server to contact.

Connect Optional connection handle.

InSelectBitmap Bitmap of attributes to set.

OutSelectBitmap Returned bitmap of attributes actually set.

InAttributes Attributes to set.

OutAttributes Returned attributes actually set.

Return values
Upon successful completion, ls_ServerSetAttrs returns zero. Otherwise, it returns a common
error condition or one of the following error conditions described below.

Error conditions
HPSS_EFAULT OutSelectBitmap, InAttributes or OutAttributes is NULL.

See also
ls_ServerGetAttrs.

Clients
SSM.

Notes
If the LS is told to shutdown, halt or reinitialize, this function returns before the operation
completes.

Chapter 9: Location Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 9-23
Rev. 0

9.2.9. ls_StatGetAttrs

Purpose
Retrieve Location Server statistics.

Syntax
#include "ls_interface.h"

signed32
ls_StatGetAttrs(

handle_t Binding, /* IN */
hpss_connect_handle_t *Connect, /* IN */
ls_server_stats_t *StatData) /* OUT */

Description
The ls_StatGetAttrs function retrieves the runtime statistics of the Location Server. The caller
must have control permissions on the Location Server’s Security ACL in order to call this function.

Parameters
Binding RPC binding handle to Location Server to contact.

Connect Optional connection handle.

StatData Returned server attributes.

Return values
Upon successful completion, ls_StatGetAttrs returns zero. Otherwise, it returns a common error
condition or one of the following error conditions described below.

Error conditions
HPSS_EFAULT StatData is NULL.

See also
None.

Clients
SSM.

Notes
None.

Chapter 9: Location Server Functions

9-24 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

9.2.10. ls_StatSetAttrs

Purpose
Set Location Server statistics.

Syntax
#include "ls_interface.h"

signed32
ls_StatSetAttrs(

handle_t Binding, /* IN */
hpss_connect_handle_t *Connect, /* IN */
u_signed64 InSelectBitmap, /* IN */
u_signed64 *OutSelectBitmap, /* OUT */
ls_server_stats_t *InStatData, /* IN */
ls_server_stats_t *OutStatData) /* OUT */

Description
The ls_StatSetAttrs function sets the runtime server statistics of the Location Server. The caller
must have control permissions on the Location Server’s Security ACL in order to call this function.

Parameters
Binding RPC binding handle to Location Server to contact.

Connect Optional connection handle.

InSelectBitmap Bitmap of statistics fields to set.

OutSelectBitmap Returned bitmap of statistics fields actually set.

InStatData Statistics to set.

OutStatData Returned statistics actually set.

Return values
Upon successful completion, ls_StatSetAttrs returns zero. Otherwise, it returns a common error
condition or one of the following error conditions described below.

Error conditions
HPSS_EFAULT OutSelectBitmap, InStatData or OutStatData is NULL.

See also
None.

Clients
SSM.

Notes
None.

Chapter 9: Location Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 9-25
Rev. 0

9.3. Data Definitions

This section describes key internal data definitions and all externally used data definitions which are
provided by this subsystem. A data definition may be represented by constructs such as data structures
and constants. For each data definition, a description, format (including parameter descriptions), and
clients which access the data definition are provided.

9.3.1. Location Map Structure – ls_map_t

Description

The Location Map Structure “maps” a single HPSS server’s object UUID to its DCE CDS Pathname. The
various Location Map lookup APIs return this information for the server desired. This structure is mainly
used by the client to connect locate a server to connect to.

Format

The ls_map_t structure has the following format:

typedef struct ls_map {
uuid_t UUID;
uuid_t HPSSId;
char CDSPath[HPSS_MAX_DCE_NAME];
unsigned32 ServerType;
unsigned32 Flags;

} ls_map_t;

UUID

The UUID of the HPSS server.

HPSSId

The HPSS identifier for the HPSS system that the server belongs to.

CDSPath

The CDS path needed to contact this HPSS server.

ServerType

The type of HPSS server. Valid values are:

BFS_SERVER_TYPE Bitfile Server

DFSID_SERVER_TYPEDMAP Gateway Server

DMG_SERVER_TYPE DMAP Gateway Server

LS_SERVER_TYPE Location Server

NS_SERVER_TYPE Name Server

Flags

Flags field for this HPSS server. Valid values are:

LS_MAP_IS_LOCAL Server is in the local HPSS system.

LS_MAP_PERM This map is a permanent entry. Client cache library only.

Chapter 9: Location Server Functions

9-26 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

LS_MAP_ROOT_NS Server is the root name server for the HPSS system.

LS_MAP_RPCGROUP Map represents a DCE RPC group of Location Servers.

Clients

The following clients access the data definition:

• Client API, Client Cache Library.

9.3.2. Location Map Array – ls_map_array_t

Description

The Location Map Array structure contains a set of location maps in conformant array format. This
structure is used when Location Servers exchange remote map information.

Format
typedef struct ls_map_array {

unsigned32 Count;
[size_is[(Count)] ls_map_t Loc[*];

} ls_map_array_t;

Count

Number of location maps allocated to Loc.

Loc

Array of location maps.

Clients

The following clients access the data definition:

• Client API, Client Cache Library.

9.3.3. COS/BFS Selection Structure – ls_cos_bfs_t

Description

The COS/BFS Selection Structure represents a single Class of Server and Bitfile Server pairing. This
pairing is used by the Client API while performing COS selection when a file is initially created.

Format
typedef struct ls_cos_bfs {

uuid_t BFSId;
unsigned32 COSId;
signed32 COSWeight;
unsigned32 MaxOpenFiles;
u_signed64 Bitfiles;
u_signed64 FreeSpace;
u_signed64 UsedSpace;
u_signed64 BlockSize;

} ls_cos_bfs_t;

COSId

Class of Service (COS) ID.

BFSId

The UUID of the Bitfile Server.

Chapter 9: Location Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 9-27
Rev. 0

COSWeight

The weight given to this COS based on COS Hints. This field is only useful when compared to other
entries in the COS/BFS array passed back by the hpss_LocateBFSByCOSHints or ls_BFSByCOSHints
call. The higher the value, the better the match.

MaxOpenFiles

The maximum number of file that this BFS may have open at the same time.

Bitfiles

The total number of bitfiles stored for this BFS. This value should be treated as an estimate. It will be
correct for a specific point in time in the recent past.

FreeSpace

The amount of free space in bytes for this COS at this BFS. This value should be treated as an estimate.
It will be correct for a specific point in time in the recent past.

UsedSpace

The amount of used space in bytes for this COS at this BFS. This value should be treated as an estimate.
It will be correct for a specific point in time in the recent past.

BlockSize

Allocation block size in bytes for this COS at this BFS.

Clients

The following clients access the data definition:

• Client API, Client Cache Library.

9.3.4. COS/BFS Array Structure – ls_cos_bfs_array_t

Description

The COS/BFS Array Structure is a conformant array of COS/BFS Selection structures. It is used by the
Client API to determine COS and BFS selection during file creation.

Format
typedef struct ls_cos_bfs_array {

unsigned32 Count;
[size_is(Count)] ls_cos_bfs_t *CosBfs;

} ls_cos_bfs_array_t;

Count

Number of COS/BFS pairs allocated to by CosBfs.

CosBfs

Conformant array of COS/BFS information.

Clients

The following clients access the data definition:

• Client API, Client Cache Library.

9.3.5. Location Server Statistics Structure – ls_server_stats_t

Chapter 9: Location Server Functions

9-28 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Description

The Location Server Statistics Structure contains runtime statistics for the Location Server. It is return to
and reset by the SSM.

Format
typedef struct ls_server_stats {

unsigned32 RegisterBitmap;
unsigned32 RequestsPerMinute;
unsigned32 RequestErrors;
unsigned32 CosBfsRequests;
unsigned32 CosBfsRemoteReqs;
unsigned32 CosBfsUpdates;
unsigned32 CosBfsUpdTimeouts;
unsigned32 MinCosBfsUpdate;
unsigned32 AvgCosBfsUpdate;
unsigned32 MaxCosBfsUpdate;
unsigned32 LocMapRequests;
unsigned32 LocMapUpdates;
unsigned32 LocMapUpdTimeouts;
unsigned32 MinLocMapUpdate;
unsigned32 AvgLocMapUpdate;
unsigned32 MaxLocMapUpdate;

} ls_server_stats_t;

RegisterBitmap

A bitmap representing which fields SSM has currently registered for. These may be any of the following
OR’d together:

LS_STAT_REGISTERBITMAP Represents RegisterBitmap field.

LS_STAT_REQPERMIN Represents RequestsPerMinute field.

LS_STAT_REQERRORS Represents RequestErrors field.

LS_STAT_COSBFSREQ Represents CosBfsRequests field.

LS_STAT_COSBFSREMOTEREQ Represents CosBfsRemoteReqs field.

LS_STAT_COSBFSUPD Represents CosBfsUpdates field.

LS_STAT_COSBFSTIMEOUTS Represents CosBfsUpdTimeouts field.

LS_STAT_MINCOSBFSUPD Represents MinCosBfsUpdate field.

LS_STAT_AVGCOSBFSUPD Represents AvgCosBfsUpdate field.

LS_STAT_MAXCOSBFSUPD Represents MaxCosBfsUpdate field.

LS_STAT_LOCMAPREQ Represents LocMapRequests field.

LS_STAT_LOCMAPUPD Represents LocMapUpdates field.

LS_STAT_LOCMAPTIMEOUTS Represents LocMapUpdTimeouts field.

LS_STAT_MINLOCMAPUPD Represents MinLocMapUpdate field.

LS_STAT_AVGLOCMAPUPD Represents AvgLocMapUpdate field.

Chapter 9: Location Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 9-29
Rev. 0

LS_STAT_MAXLOCMAPUPD Represents MaxLocMapUpdate field.

RequestsPerMinute

The number of CosBfs and LocMap requests processed during the previous minute.

RequestErrors

The total number of CosBfs and LocMap request errors returned to clients.

CosBfsRequests

The total number of CosBfs client requests received.

CosBfsRemoteReqs

The number of COS/BFS forwarded requests received from a remote Location Server.

CosBfsUpdates

The number of times COS/BFS statistics have been updated in the background.

CosBfsUpdTimeouts

The number of times a single BFS did not return COS/BFS statistics within the COS/BFS update interval.

MinCosBfsUpdate

The shortest time an update took to receive COS/BFS statistics from all BFSs. Timed out requests are
not counted.

AvgCosBfsUpdate

The average time updates are taking to receive COS/BFS statistics from all BFSs. Timed out requests
are not counted.

MaxCosBfsUpdate

The longest time an update took to receive COS/BFS statistics from all BFSs. Timed out requests are not
counted.

LocMapRequests

The total number of Location map information client requests received.

LocMapUpdates

The number of times Location map information has been updated in the background.

LocMapUpdTimeouts

The number of times a single remote Location Server did not return Location map information within the
Location map update interval.

MinLocMapUpdate

The shortest time an update took to receive Location map information from all remote Location Servers.
Timed out requests are not counted.

AvgLocMapUpdate

The average time updates are taking to receive Location map information from all remote Location
Servers. Timed out requests are not counted.

MaxLocMapUpdate

The longest time an update took to receive Location map information from all remote Location Servers.

Chapter 9: Location Server Functions

9-30 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Timed out requests are not counted.

Clients

The following clients access the data definition:

• SSM.

9.3.6. Location Policy Metadata Structure – ls_policy_md_t

Description

The Location Policy Metadata Structure contains information on how all of the local Location Servers will
behave. It is similar to a server specific metadata record, but is shared by all local Location Servers.

Format
typedef struct ls_policy_md {
 unsigned32 Id;
 unsigned32 Pad1;
 char CosMdFilename[HPSS_MAX_DCE_NAME];
 char SiteMdFilename[HPSS_MAX_DCE_NAME];
 char GroupName[HPSS_MAX_DCE_NAME];
 unsigned32 CosBfsUpdInterval;
 unsigned32 LocMapUpdInterval;
 unsigned32 MaxRequestThreads;
 unsigned32 MaxCosBfsThreads;
 unsigned32 MaxLocMapThreads;
 unsigned32 CosBfsTimeout;
 unsigned32 LocMapTimeout;
 unsigned32 Pad2;
 uuid_t HPSSId;
} ls_policy_md_t;

Id

The index of this metadata record. This is always 1.

Pad1

An unused (reserved) field. Used for padding the metadata record properly.

CosMdFilename

The name of the COS metadata file.

SiteMdFilename

The name of the remote site metadata file.

GroupName

The name of the DCE RPC Group name used by clients to connect to the local Location Servers.
Location Servers insert their CDS pathnames into this group during startup and remove them when
shutting down.

CosBfsUpdInterval

The amount of time to wait, in seconds, between periodic background updates of COS/BFS information.

LocMapUpdInterval

The amount of time to wait, in seconds, between periodic background updates of location map
information.

MaxRequestThreads

Chapter 9: Location Server Functions

HPSS Programmer’s Ref., Vol. 2 April 1999 9-31
Rev. 0

The maximum number of threads to use to allow to handle incoming client RPC requests. This value plus
the values in MaxCosBfsThreads and MaxLocMapThreads should not be greater than 500.

MaxCosBfsThreads

The maximum number of threads to use to gather COS/BFS statistic information. In any case, the actual
number of threads used will not exceed the number of active local BFSs.

MaxLocMapThreads

The maximum number of threads to use to gather location mapping information. In any case, the actual
number of threads used will not exceed the number of active remote Location Servers.

CosBfsTimeout

The maximum amount of time to wait, in seconds, for BFS to return COS/BFS information.

LocMapTimeout

The maximum amount of time to wait, in seconds, for a remote Location Server to return location
information.

Pad2

An unused (reserved) field. Used for padding the metadata record properly.

HPSSId

The unique identifier for this HPSS system (installation).

Clients

The following clients access the data definition:

• SSM.

9.3.7. Remote HPSS Site Metadata Structure – hpss_site_md_t

Description

The Remote HPSS Site Metadata Structure contains information on how to contact a Location Server
located at a remote HPSS site. The information stored in this record contains information entered into the
Location Policy Metadata Structure at the remote site. It is used by the local Location Servers to connect
to and exchange information with remote Location Servers.

Format
typedef struct hpss_site_md {

uuid_t HPSSId;
char DescName[HPSS_MAX_DESC_NAME];
char LSGroupName[HPSS_MAX_DCE_NAME];
unsigned32 Pad1;
unsigned32 Pad2;

} hpss_site_md_t;

HPSSId

The unique identifier for the remote HPSS system. This should be copied from the remote site’s Location
Policy Metadata Structure.

DescName

A descriptive name for the remote HPSS system.

LSGroupName

Chapter 9: Location Server Functions

9-32 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

The DCE CDS pathname of the remote RPC group used to contact a remote Location Server. This
should be copied from the remote site’s Location Policy Metadata Structure. Make sure the value is fully
qualified (i.e. it begins with /…/<remote-cell’s-name>).

Pad1

An unused (reserved) field. Used for padding the metadata record properly.

Pad2

An unused (reserved) field. Used for padding the metadata record properly.

Clients

The following clients access the data definition:

• Location Server, SSM.

Appendix A

HPSS Programmer’s Ref., Vol. 2 April 1999 Page A-1
Ref. 0

Appendix A - Acronyms

ACL Access Control List
AIX Advanced Interactive Executive
API Application Program Interface
BFS Bitfile Server
CCPI Client Cache Programming Interface
CDS Cell Directory Server
DCE Distributed Computing Environment
DIR Database Interface Routines
DOE Department of Energy
EFS External File System
FTP File Transfer Protocol
GID Group Identifier
HPNS HPSS POSIX Name Server
HPSS High Performance Storage System
IBM International Business Machines Corporation
ID Identifier
IEEE Institute of Electrical and Electronics Engineers
I/O Input / Output
IOD I/O Descriptor
IOR I/O Reply
IP Internet Protocol
IPI Intelligent Peripheral Interface
LANL Los Alamos National Laboratory
LIR Local Interface Routines
LLNL Lawrence Livermore National Laboratory
LS Location Server
MPI-IO Message Passing Inteface – Input / Output
MPS Migration Purge Server
MSSRM Mass Storage System Reference Model
NFS Network File System
NS Name Server
ORNL Oak Ridge National Laboratory
PIOFS Parallel I/O File System
POSIX Portable Operating System Interface for computer environments (an IEEE operating

system standard)
PVL Physical Volume Library
PVR Physical Volume Repository
RIR Remote Interface Routines
RISC Reduced Instruction Set Computer
RPC Remote Procedure Call
RSN Relative Sequence Number
SFS Structured File Server
SIR System Interface Routines
SNL Sandia National Laboratories
SPI Server Programming Interface
SS Storage Segment

Storage Server
SSM Storage System Manager
SP Scalable Processor
TCP Transmission Control Protocol
UID User Identifier
UUID Universally Unique Identifier

Appendix A

A-2 April 1999 HPSS Programmer’s Ref., Vol. 2
Ref. 0

VV Virtual Volume
UID User Identifier

Appendix B

HPSS Programmer’s Ref., Vol. 2 April 1999 Page B-1
Ref. 0

Appendix B - References

1. HPSS Error Messages Manual, April 1999.

2. HPSS Programmer’s Reference Guide, Volume 1, April 1999.

3. HPSS System Administration Guide, April 1999.

4. HPSS User’s Guide, April 1999.

5. Institute of Electrical and Electronics Engineers (IEEE) Mass Storage System Reference
Model (MSSRM) (Version 5).

Appendix B

B-2 April 1999 HPSS Programmer’s Ref., Vol. 2
Ref. 0

